- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试创建一个用于图像分割的简单 3D U-net,只是为了学习如何使用图层。因此,我进行步幅为 2 的 3D 卷积,然后进行转置反卷积以获得相同的图像大小。我也过度拟合了一个小集(测试集)只是为了看看我的网络是否在学习。
我在 Keras 中创建了相同的网络,它工作得很好。现在我想在 tensorflow 中创建,但我一直遇到问题。
成本略有变化,但无论我做什么(降低学习率、添加更多纪元、添加更多层、更改批量大小...),输出始终相同。我相信网络不会更新权重。我确定我做错了什么,但我可以找到它是什么。任何帮助将不胜感激。
这是我的代码:
def forward_propagation(X):
if ( mode == 'train'): print(" --------- Net --------- ")
# Convolutional Layer 1
with tf.variable_scope('CONV1'):
Z1 = tf.layers.conv3d(X, filters = 16, kernel =[3,3,3], strides = [ 2, 2, 2], padding='SAME', name = 'S2/conv3d')
A1 = tf.nn.relu(Z1, name = 'S2/ReLU')
if ( mode == 'train'): print("Convolutional Layer 1 S2 " + str(A1.get_shape()))
# DEConvolutional Layer 1
with tf.variable_scope('DeCONV1'):
output_deconv1 = tf.stack([X.get_shape()[0] , X.get_shape()[1], X.get_shape()[2], X.get_shape()[3], 1])
dZ1 = tf.nn.conv3d_transpose(A1, filters = 1, kernel =[3,3,3], strides = [2, 2, 2], padding='SAME', name = 'S2/conv3d_transpose')
dA1 = tf.nn.relu(dZ1, name = 'S2/ReLU')
if ( mode == 'train'): print("Deconvolutional Layer 1 S1 " + str(dA1.get_shape()))
return dA1
def compute_cost(output, target, method = 'dice_hard_coe'):
with tf.variable_scope('COST'):
if (method == 'sigmoid_cross_entropy') :
# Make them vectors
output = tf.reshape( output, [-1, output.get_shape().as_list()[0]] )
target = tf.reshape( target, [-1, target.get_shape().as_list()[0]] )
loss = tf.nn.sigmoid_cross_entropy_with_logits(logits = output, labels = target)
cost = tf.reduce_mean(loss)
return cost
以及模型的主要功能:
def model(X_h5, Y_h5, learning_rate = 0.009,
num_epochs = 100, minibatch_size = 64, print_cost = True):
ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
#tf.set_random_seed(1) # to keep results consistent (tensorflow seed)
#seed = 3 # to keep results consistent (numpy seed)
(m, n_D, n_H, n_W, num_channels) = X_h5["test_data"].shape #TTT
num_labels = Y_h5["test_mask"].shape[4] #TTT
img_size = Y_h5["test_mask"].shape[1] #TTT
costs = [] # To keep track of the cost
accuracies = [] # To keep track of the accuracy
# Create Placeholders of the correct shape
X, Y = create_placeholders(n_H, n_W, n_D, minibatch_size)
# Forward propagation: Build the forward propagation in the tensorflow graph
nn_output = forward_propagation(X)
prediction = tf.nn.sigmoid(nn_output)
# Cost function: Add cost function to tensorflow graph
cost_method = 'sigmoid_cross_entropy'
cost = compute_cost(nn_output, Y, cost_method)
# Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
# Initialize all the variables globally
init = tf.global_variables_initializer()
# Start the session to compute the tensorflow graph
with tf.Session() as sess:
print('------ Training ------')
# Run the initialization
tf.local_variables_initializer().run(session=sess)
sess.run(init)
# Do the training loop
for i in range(num_epochs*m):
# ----- TRAIN -------
current_epoch = i//m
patient_start = i-(current_epoch * m)
patient_end = patient_start + minibatch_size
current_X_train = np.zeros((minibatch_size, n_D, n_H, n_W,num_channels))
current_X_train[:,:,:,:,:] = np.array(X_h5["test_data"][patient_start:patient_end,:,:,:,:]) #TTT
current_X_train = np.nan_to_num(current_X_train) # make nan zero
current_Y_train = np.zeros((minibatch_size, n_D, n_H, n_W, num_labels))
current_Y_train[:,:,:,:,:] = np.array(Y_h5["test_mask"][patient_start:patient_end,:,:,:,:]) #TTT
current_Y_train = np.nan_to_num(current_Y_train) # make nan zero
feed_dict = {X: current_X_train, Y: current_Y_train}
_ , temp_cost = sess.run([optimizer, cost], feed_dict=feed_dict)
# ----- TEST -------
# Print the cost every 1/5 epoch
if ((i % (num_epochs*m/5) )== 0):
# Calculate the predictions
test_predictions = np.zeros(Y_h5["test_mask"].shape)
for j in range(0, X_h5["test_data"].shape[0], minibatch_size):
patient_start = j
patient_end = patient_start + minibatch_size
current_X_test = np.zeros((minibatch_size, n_D, n_H, n_W, num_channels))
current_X_test[:,:,:,:,:] = np.array(X_h5["test_data"][patient_start:patient_end,:,:,:,:])
current_X_test = np.nan_to_num(current_X_test) # make nan zero
current_Y_test = np.zeros((minibatch_size, n_D, n_H, n_W, num_labels))
current_Y_test[:,:,:,:,:] = np.array(Y_h5["test_mask"][patient_start:patient_end,:,:,:,:])
current_Y_test = np.nan_to_num(current_Y_test) # make nan zero
feed_dict = {X: current_X_test, Y: current_Y_test}
_, current_prediction = sess.run([cost, prediction], feed_dict=feed_dict)
test_predictions[j:j + minibatch_size,:,:,:,:] = current_prediction
costs.append(temp_cost)
print ("[" + str(current_epoch) + "|" + str(num_epochs) + "] " + "Cost : " + str(costs[-1]))
display_progress(X_h5["test_data"], Y_h5["test_mask"], test_predictions, 5, n_H, n_W)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('epochs')
plt.show()
return
我调用模型:
model(hdf5_data_file, hdf5_mask_file, num_epochs = 500, minibatch_size = 1, learning_rate = 1e-3)
编辑:我试过降低学习率,但没有用。我还尝试使用 tensorboard debug,但权重没有更新:
我不确定为什么会这样。我在 keras 中创建了相同的简单模型并且工作正常。我不确定我在 tensorflow 中做错了什么。
最佳答案
不确定您是否仍在寻求帮助,因为我在您发布日期半年后回答这个问题。 :) 我在下面列出了我的观察结果以及一些供您尝试的建议。如果我的主要观察是正确的...那么您可能只需要喝杯咖啡/睡个好觉。
主要观察:
tf.reshape( output, [-1, output.get_shape().as_list()[0]] )
似乎是错误的。如果您更喜欢展平矢量,它应该类似于 tf.reshape(output,[-1,np.prod(image_shape_list)])
。其他观察:
关于python - Tensorflow:简单的 3D Convnet 不学习,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51290691/
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 9 年前。 Improve
介绍篇 什么是MiniApis? MiniApis的特点和优势 MiniApis的应用场景 环境搭建 系统要求 安装MiniApis 配置开发环境 基础概念 MiniApis架构概述
我正在从“JavaScript 圣经”一书中学习 javascript,但我遇到了一些困难。我试图理解这段代码: function checkIt(evt) { evt = (evt) ? e
package com.fastone.www.javademo.stringintern; /** * * String.intern()是一个Native方法, * 它的作用是:如果字
您会推荐哪些资源来学习 AppleScript。我使用具有 Objective-C 背景的传统 C/C++。 我也在寻找有关如何更好地开发和从脚本编辑器获取更快文档的技巧。示例提示是“查找要编写脚本的
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 4年前关闭。 Improve thi
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
关闭。这个问题不符合 Stack Overflow guidelines 。它目前不接受答案。 想改善这个问题吗?更新问题,以便堆栈溢出为 on-topic。 6年前关闭。 Improve this
我是塞内加尔的阿里。我今年60岁(也许这是我真正的问题-笑脸!!!)。 我正在学习Flutter和Dart。今天,我想使用给定数据模型的列表(它的名称是Mortalite,请参见下面的代码)。 我尝试
关闭。这个问题是off-topic .它目前不接受答案。 想改进这个问题? Update the question所以它是on-topic对于堆栈溢出。 9年前关闭。 Improve this que
学习 Cappuccino 的最佳来源是什么?我从事“传统”网络开发,但我对这个新框架非常感兴趣。请注意,我对 Objective-C 毫无了解。 最佳答案 如上所述,该网站是一个好地方,但还有一些其
我正在学习如何使用 hashMap,有人可以检查我编写的这段代码并告诉我它是否正确吗?这个想法是有一个在公司工作的员工列表,我想从 hashMap 添加和删除员工。 public class Staf
我正在尝试将 jQuery 与 CoffeScript 一起使用。我按照博客中的说明操作,指示使用 $ -> 或 jQuery -> 而不是 .ready() 。我玩了一下代码,但我似乎无法理解我出错
还在学习,还有很多问题,所以这里有一些。我正在进行 javascript -> PHP 转换,并希望确保这些做法是正确的。是$dailyparams->$calories = $calories;一条
我目前正在学习 SQL,以便从我们的 Magento 数据库制作一个简单的 RFM 报告,我目前可以通过导出两个查询并将它们粘贴到 Excel 模板中来完成此操作,我想摆脱 Excel 模板。 我认为
我知道我很可能会因为这个问题而受到抨击,但没有人问,我求助于你。这是否是一个正确的 javascript > php 转换 - 在我开始不良做法之前,我想知道这是否是解决此问题的正确方法。 JavaS
除了 Ruby-Doc 之外,哪些来源最适合获取一些示例和教程,尤其是关于 Ruby 中的 Tk/Tile?我发现自己更正常了 http://www.tutorialspoint.com/ruby/r
我只在第一次收到警告。这正常吗? >>> cv=LassoCV(cv=10).fit(x,y) C:\Python27\lib\site-packages\scikit_learn-0.14.1-py
按照目前的情况,这个问题不适合我们的问答形式。我们希望答案得到事实、引用或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be
我是一名优秀的程序员,十分优秀!