- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在我的 Pycharm 中编写了以下代码,它在 Tensorflow 中执行完全连接层 (FCL)。占位符发生无效参数错误。所以我在占位符中输入了所有的dtype
、shape
和name
,但我仍然得到无效参数错误 .
我想通过 FCL 模型制作新的 Signal(1, 222)。
输入信号(1, 222) => 输出信号(1, 222)
maxPredict
:查找输出信号中具有最高值的索引。 计算Y
:获取maxPredict对应的频率数组值。loss
:使用真实 Y 与计算 Y 之间的差异作为损失。loss
= tf.abs(trueY - calculateY)`代码(发生错误)x = tf.placeholder(dtype=tf.float32, shape=[1, 222], name='inputX')
错误
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'inputX' with dtype float and shape [1,222] tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'inputX' with dtype float and shape [1,222] [[{{node inputX}} = Placeholderdtype=DT_FLOAT, shape=[1,222], _device="/job:localhost/replica:0/task:0/device:CPU:0"]] During handling of the above exception, another exception occurred:
我更改了我的代码。x = tf.placeholder(tf.float32, [None, 222], name='inputX')
错误案例 1tensorFreq = tf.convert_to_tensor(basicFreq, tf.float32)
newY = tf.gather(tensorFreq, maxPredict) * 60
loss = tf.abs(y - tf.Variable(newY))
ValueError: initial_value must have a shape specified: Tensor("mul:0", shape=(?,), dtype=float32)
错误案例 2tensorFreq = tf.convert_to_tensor(basicFreq, tf.float32)
newY = tf.gather(tensorFreq, maxPredict) * 60
loss = tf.abs(y - newY)
Traceback (most recent call last): File "D:/PycharmProject/DetectionSignal/TEST_FCL_StackOverflow.py", line 127, in trainStep = opt.minimize(loss) File "C:\Users\Heewony\Anaconda3\envs\TSFW_pycharm\lib\site-packages\tensorflow\python\training\optimizer.py", line 407, in minimize ([str(v) for _, v in grads_and_vars], loss)) ValueError: No gradients provided for any variable, check your graph for ops that do not support gradients, between variables [tf.Variable 'Variable:0' shape=(222, 1024) dtype=float32_ref, tf.Variable 'Variable_1:0' shape=(1024,) dtype=float32_re, ......... tf.Variable 'Variable_5:0' shape=(222,) dtype=float32_ref] and loss Tensor("Abs:0", dtype=float32).
def Model_FCL(inputX):
data = inputX # input Signals
# Fully Connected Layer 1
flatConvh1 = tf.reshape(data, [-1, 222])
fcW1 = tf.Variable(tf.truncated_normal(shape=[222, 1024], stddev=0.05))
fcb1 = tf.Variable(tf.constant(0.1, shape=[1024]))
fch1 = tf.nn.relu(tf.matmul(flatConvh1, fcW1) + fcb1)
# Fully Connected Layer 2
flatConvh2 = tf.reshape(fch1, [-1, 1024])
fcW2 = tf.Variable(tf.truncated_normal(shape=[1024, 1024], stddev=0.05))
fcb2 = tf.Variable(tf.constant(0.1, shape=[1024]))
fch2 = tf.nn.relu(tf.matmul(flatConvh2, fcW2) + fcb2)
# Output Layer
fcW3 = tf.Variable(tf.truncated_normal(shape=[1024, 222], stddev=0.05))
fcb3 = tf.Variable(tf.constant(0.1, shape=[222]))
logits = tf.add(tf.matmul(fch2, fcW3), fcb3)
predictY = tf.nn.softmax(logits)
return predictY, logits
def loadMatlabData(fileName):
contentsMat = sio.loadmat(fileName)
dataInput = contentsMat['dataInput']
dataLabel = contentsMat['dataLabel']
dataSize = dataInput.shape
dataSize = dataSize[0]
return dataInput, dataLabel, dataSize
def getNextSignal(num, data, labels, WINDOW_SIZE, OUTPUT_SIZE):
shuffleSignal = data[num]
shuffleLabels = labels[num]
# shuffleSignal = shuffleSignal.reshape(1, WINDOW_SIZE)
# shuffleSignal = np.asarray(shuffleSignal, np.float32)
return shuffleSignal, shuffleLabels
def getBasicFrequency():
# basicFreq => shape(222)
basicFreq = np.array([0.598436736688, 0.610649731314, ... 3.297508549096])
return basicFreq
basicFreq = getBasicFrequency()
myGraph = tf.Graph()
with myGraph.as_default():
# define input data & output data 입력받기 위한 placeholder
x = tf.placeholder(dtype=tf.float32, shape=[1, 222], name='inputX') # Signal size = [1, 222]
y = tf.placeholder(tf.float32, name='trueY') # Float value size = [1]
print('inputzz ', x, y)
print('Graph ', myGraph.get_operations())
print('TrainVariable ', tf.trainable_variables())
predictY, logits = Model_FCL(x) # Predict Signal, size = [1, 222]
maxPredict = tf.argmax(predictY, 1, name='maxPredict') # Find max index of Predict Signal
tensorFreq = tf.convert_to_tensor(basicFreq, tf.float32)
newY = tf.gather(tensorFreq, maxPredict) * 60 # Find the value that corresponds to the Freq array index
loss = tf.abs(y - tf.Variable(newY)) # Calculate absolute (true Y - predict Y)
opt = tf.train.AdamOptimizer(learning_rate=0.0001)
trainStep = opt.minimize(loss)
print('Graph ', myGraph.get_operations())
print('TrainVariable ', tf.trainable_variables())
with tf.Session(graph=myGraph) as sess:
sess.run(tf.global_variables_initializer())
dataFolder = './'
writer = tf.summary.FileWriter('./logMyGraph', sess.graph)
startTime = datetime.datetime.now()
numberSummary = 0
accuracyTotalTrain = []
for trainEpoch in range(1, 25 + 1):
arrayTrain = []
dataPPG, dataLabel, dataSize = loadMatlabData(dataFolder + "TestValues.mat")
for i in range(dataSize):
batchSignal, valueTrue = getNextSignal(i, dataPPG, dataLabel, 222, 222)
_, lossPrint, valuePredict = sess.run([trainStep, loss, newY], feed_dict={x: batchSignal, y: valueTrue})
print('Train ', i, ' ', valueTrue, ' - ', valuePredict, ' Loss ', lossPrint)
arrayTrain.append(lossPrint)
writer.add_summary(tf.Summary(value=[tf.Summary.Value(tag='Loss', simple_value=float(lossPrint))]),
numberSummary)
numberSummary += 1
accuracyTotalTrain.append(np.mean(arrayTrain))
print('Final Train : ', accuracyTotalTrain)
sess.close()
最佳答案
似乎变量 batchSignal
的类型或形状有误。它必须是形状完全为 [1, 222]
的 numpy 数组。如果要使用一批大小为 n × 222 的示例,占位符 x
的形状应为 [None, 222]
并且占位符 y
形状 [None]
.
顺便说一句,考虑使用tf.layers.dense
而不是显式初始化变量并自己实现层。
关于python - 无效参数错误 : You must feed a value for placeholder tensor 'Placeholder' with dtype float and shape,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55608075/
我是一名优秀的程序员,十分优秀!