gpt4 book ai didi

python - 来自 gda94 的 affine_transform xy 坐标

转载 作者:行者123 更新时间:2023-11-28 18:48:55 24 4
gpt4 key购买 nike

我想弄清楚如何将坐标在空间引用 GDA94 (EPSG 4283) 中的多边形转换为 xy 坐标(逆仿射变换矩阵)。

以下代码有效:

import sys

import numpy as np

from osgeo import gdal
from osgeo import gdalconst

from shapely.geometry import Polygon
from shapely.geometry.polygon import LinearRing

# Bounding Box (via App) approximating part of QLD.
poly = Polygon(
LinearRing([
(137.8, -10.6),
(153.2, -10.6),
(153.2, -28.2),
(137.8, -28.2),
(137.8, -10.6)
])
)

# open raster data
ds = gdal.Open(sys.argv[1], gdalconst.GA_ReadOnly)

# get inverse transform matrix
(success, inv_geomatrix) = gdal.InvGeoTransform(ds.GetGeoTransform())
print inv_geomatrix

# build numpy rotation matrix
rot = np.matrix(([inv_geomatrix[1], inv_geomatrix[2]], [inv_geomatrix[4], inv_geomatrix[5]]))
print rot

# build numpy translation matrix
trans = np.matrix(([inv_geomatrix[0]], [inv_geomatrix[3]]))
print trans

# build affine transformation matrix
affm = np.matrix(([inv_geomatrix[1], inv_geomatrix[2], inv_geomatrix[0]],
[inv_geomatrix[4], inv_geomatrix[5], inv_geomatrix[3]],
[0, 0, 1]))
print affm

# poly is now a shapely geometry in gd94 coordinates -> convert to pixel
# - project poly onte raster data
xy = (rot * poly.exterior.xy + trans).T # need to transpose here to have a list of (x,y) pairs

print xy

这是打印矩阵的输出:

(-2239.4999999999995, 20.0, 0.0, -199.49999999999986, 0.0, -20.0)
[[ 20. 0.]
[ 0. -20.]]
[[-2239.5]
[ -199.5]]
[[ 2.00000000e+01 0.00000000e+00 -2.23950000e+03]
[ 0.00000000e+00 -2.00000000e+01 -1.99500000e+02]
[ 0.00000000e+00 0.00000000e+00 1.00000000e+00]]
[[ 516.5 12.5]
[ 824.5 12.5]
[ 824.5 364.5]
[ 516.5 364.5]
[ 516.5 12.5]]

有没有办法用 scipy.ndimageaffine_transform 函数做到这一点?

最佳答案

有几个选项。不是所有的空间变换都在线性空间,所以不能都用仿射变换,所以不要老是依赖它。如果您有两个 EPSG SRID,则可以使用 GDAL 的 OSR 模块进行通用空间变换。 I wrote an example a while back , 可以进行调整。


否则,仿射变换具有基本数学:

                    / a  b xoff \ 
[x' y' 1] = [x y 1] | d e yoff |
\ 0 0 1 /
or
x' = a * x + b * y + xoff
y' = d * x + e * y + yoff

可以在 Python 中通过点列表实现。

# original points
pts = [(137.8, -10.6),
(153.2, -10.6),
(153.2, -28.2),
(137.8, -28.2)]

# Interpret result from gdal.InvGeoTransform
# see http://www.gdal.org/classGDALDataset.html#af9593cc241e7d140f5f3c4798a43a668
xoff, a, b, yoff, d, e = inv_geomatrix

for x, y in pts:
xp = a * x + b * y + xoff
yp = d * x + e * y + yoff
print((xp, yp))

这与 Shapely 的 shapely.affinity.affine_transform function 中使用的基本算法相同。 .

from shapely.geometry import Polygon
from shapely.affinity import affine_transform

poly = Polygon(pts)

# rearrange the coefficients in the order expected by affine_transform
matrix = (a, b, d, e, xoff, yoff)

polyp = affine_transform(poly, matrix)
print(polyp.wkt)

最后,值得一提的是 scipy.ndimage.interpolation.affine_transform function适用于图像或栅格数据,而不是矢量数据。

关于python - 来自 gda94 的 affine_transform xy 坐标,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/16006237/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com