gpt4 book ai didi

python - 在 Pyspark ML 中的稀疏向量数据类型列上创建 Python 转换器

转载 作者:行者123 更新时间:2023-11-28 18:32:10 27 4
gpt4 key购买 nike

我有一个包含列“特征”的数据框(数据框中的每一行代表一个文档)。我使用 HashingTF 来计算列 'tf' 并且我还创建了一个自定义转换器 'TermCount'(就像测试一样)来计算 'total_terms'如下:

from pyspark import SparkContext
from pyspark.sql import SQLContext,Row
from pyspark.ml.pipeline import Transformer
from pyspark.ml.param.shared import HasInputCol, HasOutputCol, Param
from pyspark.ml.feature import HashingTF
from pyspark.ml.util import keyword_only
from pyspark.mllib.linalg import SparseVector
from pyspark.sql.functions import udf

class TermCount(Transformer, HasInputCol, HasOutputCol):

@keyword_only
def __init__(self, inputCol=None, outputCol=None):
super(TermCount, self).__init__()
kwargs = self.__init__._input_kwargs
self.setParams(**kwargs)

@keyword_only
def setParams(self, inputCol=None, outputCol=None):
kwargs = self.setParams._input_kwargs
return self._set(**kwargs)

def _transform(self, dataset):

def f(s):
return len(s.values)

out_col = self.getOutputCol()
in_col = dataset[self.getInputCol()]
return dataset.withColumn(out_col, udf(f)(in_col))

sc = SparkContext()
sqlContext = SQLContext(sc)
documents = sqlContext.createDataFrame([
(0, "w1 w2 w3 w4 w1 w1 w1"),
(1, "w2 w3 w4 w2"),
(2, "w3 w4 w3"),
(3, "w4")], ["doc_id", "doc_text"])

df = documents.map(lambda x : (x.doc_id,x.doc_text.split(" "))).toDF().withColumnRenamed("_1","doc_id").withColumnRenamed("_2","features")

htf = HashingTF(inputCol="features", outputCol="tf")
tf = htf.transform(df)

term_count_model=TermCount(inputCol="tf", outputCol="total_terms")
tc_df=term_count_model.transform(tf)
tc_df.show(truncate=False)
#+------+----------------------------+------------------------------------------------+-----------+
#|doc_id|features |tf |total_terms|
#+------+----------------------------+------------------------------------------------+-----------+
#|0 |[w1, w2, w3, w4, w1, w1, w1]|(262144,[3738,3739,3740,3741],[4.0,1.0,1.0,1.0])|4 |
#|1 |[w2, w3, w4, w2] |(262144,[3739,3740,3741],[2.0,1.0,1.0]) |3 |
#|2 |[w3, w4, w3] |(262144,[3740,3741],[2.0,1.0]) |2 |
#|3 |[w4] |(262144,[3741],[1.0]) |1 |
#+------+----------------------------+------------------------------------------------+-----------+

现在,我需要添加一个类似的转换器,它接收“tf”作为 inputCol,并将每个术语 (no_of_rows_contains_this_term/total_no_of_rows) 的文档频率计算到 Sparsevector 类型的 outputCol,最后得到如下结果:

+------+----------------------------+------------------------------------------------+-----------+----------------------------------------------------+
|doc_id|features |tf |total_terms| doc_freq |
+------+----------------------------+------------------------------------------------+-----------+----------------------------------------------------+
|0 |[w1, w2, w3, w4, w1, w1, w1]|(262144,[3738,3739,3740,3741],[4.0,1.0,1.0,1.0])|4 |(262144,[3738,3739,3740,3741],[0.25,0.50,0.75,1.0]) |
|1 |[w2, w3, w4, w2] |(262144,[3739,3740,3741],[2.0,1.0,1.0]) |3 |(262144,[3739,3740,3741],[0.50,0.75,1.0]) |
|2 |[w3, w4, w3] |(262144,[3740,3741],[2.0,1.0]) |2 |(262144,[3740,3741],[0.75,1.0]) |
|3 |[w4] |(262144,[3741],[1.0]) |1 |(262144,[3741],[1.0]) |
+------+----------------------------+------------------------------------------------+-----------+----------------------------------------------------+

最佳答案

排除所有你可以尝试使用的包装代码Statistics.colStats :

from pyspark.mllib.stat import Statistics
from pyspark.mllib.linalg import Vectors

tf_col = "x"
dataset = sc.parallelize([
"(262144,[3738,3739,3740,3741],[0.25,0.50,0.75,1.0])",
"(262144,[3738,3739,3740,3741],[0.25,0.50,0.75,1.0])"
]).map(lambda s: (Vectors.parse(s), )).toDF(["x"])

vs = (dataset.select(tf_col)
.flatMap(lambda x: x)
.map(lambda v: Vectors.sparse(v.size, v.indices, [1.0 for _ in v.values])))

stats = Statistics.colStats(vs)

document_frequency = stats.mean()
document_frequency.max()
## 1.0
document_frequency.min()
# 0.0
document_frequency.nonzero()
## (array([3738, 3739, 3740, 3741]),)

有了这些信息后,您可以轻松调整所需的索引:

from pyspark.mllib.linalg import VectorUDT

df = Vectors.sparse(
document_frequency.shape[0], document_frequency.nonzero()[0],
document_frequency[document_frequency.nonzero()]
)

def idf(df, d):
values = ... # Compute new values
return Vectors.sparse(v.size, v.indices, values)

dataset.withColumn("idf_col", udf(idf, VectorUDT())(col("tf_col")))

一个巨大的警告是 stats.mean 返回一个 DenseVector 所以如果你有 262144 个特征的 TF 输出是一个相同长度的数组。

关于python - 在 Pyspark ML 中的稀疏向量数据类型列上创建 Python 转换器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35899392/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com