- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我认为存储具有两个 MultiIndexed 轴的 DataFrame 应该是可能的。但是,我收到以下错误:
In [1]: index = pd.MultiIndex.from_product([['Foo', 'Bar'],['One','Two','Three']])
column = pd.MultiIndex.from_product([['foo', 'bar'],['one','two','three']])
df = pd.DataFrame(np.random.rand(6,6), index=index, columns=column)
df
Out[1]: foo bar
one two three one two three
Foo One 0.605352 0.882382 0.472946 0.615619 0.108022 0.389674
Two 0.746384 0.594509 0.556881 0.457000 0.529793 0.929574
Three 0.270978 0.956778 0.515201 0.626850 0.852708 0.861962
Bar One 0.219994 0.648191 0.677824 0.408439 0.079326 0.414059
Two 0.186167 0.767103 0.880667 0.205253 0.647471 0.449379
Three 0.353171 0.249900 0.723791 0.458349 0.977604 0.691188
In [2]: with pd.HDFStore('test.h5', 'w') as store:
store.append('output', df)
Out[2]: ---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-55-87e96c141a7f> in <module>()
1 with pd.HDFStore('test.h5', 'w') as store:
----> 2 store.append('output', df)
/home/kartik/miniconda3/lib/python3.5/site-packages/pandas/io/pytables.py in append(self, key, value, format, append, columns, dropna, **kwargs)
917 kwargs = self._validate_format(format, kwargs)
918 self._write_to_group(key, value, append=append, dropna=dropna,
--> 919 **kwargs)
920
921 def append_to_multiple(self, d, value, selector, data_columns=None,
/home/kartik/miniconda3/lib/python3.5/site-packages/pandas/io/pytables.py in _write_to_group(self, key, value, format, index, append, complib, encoding, **kwargs)
1262
1263 # write the object
-> 1264 s.write(obj=value, append=append, complib=complib, **kwargs)
1265
1266 if s.is_table and index:
/home/kartik/miniconda3/lib/python3.5/site-packages/pandas/io/pytables.py in write(self, obj, data_columns, **kwargs)
4195 data_columns.insert(0, n)
4196 return super(AppendableMultiFrameTable, self).write(
-> 4197 obj=obj, data_columns=data_columns, **kwargs)
4198
4199 def read(self, **kwargs):
/home/kartik/miniconda3/lib/python3.5/site-packages/pandas/io/pytables.py in write(self, obj, axes, append, complib, complevel, fletcher32, min_itemsize, chunksize, expectedrows, dropna, **kwargs)
3785 self.create_axes(axes=axes, obj=obj, validate=append,
3786 min_itemsize=min_itemsize,
-> 3787 **kwargs)
3788
3789 for a in self.axes:
/home/kartik/miniconda3/lib/python3.5/site-packages/pandas/io/pytables.py in create_axes(self, axes, obj, validate, nan_rep, data_columns, min_itemsize, **kwargs)
3383 axis, axis_labels = self.non_index_axes[0]
3384 data_columns = self.validate_data_columns(
-> 3385 data_columns, min_itemsize)
3386 if len(data_columns):
3387 mgr = block_obj.reindex_axis(
/home/kartik/miniconda3/lib/python3.5/site-packages/pandas/io/pytables.py in validate_data_columns(self, data_columns, min_itemsize)
3246 if info.get('type') == 'MultiIndex' and data_columns:
3247 raise ValueError("cannot use a multi-index on axis [{0}] with "
-> 3248 "data_columns {1}".format(axis, data_columns))
3249
3250 # evaluate the passed data_columns, True == use all columns
ValueError: cannot use a multi-index on axis [1] with data_columns ['level_1', 'level_0']
像这样存储数据对我来说最有意义。主要是因为我的需求会有很大的不同。对于某些应用程序,我将需要所有行和所有列。对于许多其他人,我只需要所有行和一个父列:假设我需要 foo
下的所有行。我可能还只需要一个父行和一个父列:Foo, foo
。
我当然需要所有辅助行和列。
在我的例子中,主要行索引是状态,次要行索引是传感器名称,主要列索引是感测到的不同事物,次要列索引是传感器输出的统计数据。因此,很容易看出,我可能只需要一种类型的所有状态或一种状态的感知数据,或者我可能需要从一种状态或所有状态感知的所有事物。
我正在寻找错误的修复方法或更好的数据存储方式。
最佳答案
如果在存储 df
时强制执行 format='fixed'
,您可以保留 MultiIndex:
with pd.HDFStore('test.h5', 'w') as store:
store.put('output', df, format='fixed')
print store['output']
foo bar
one two three one two three
Foo One 0.9626 0.9761 0.4385 0.2976 0.0882 0.7589
Two 0.7842 0.7563 0.4796 0.5664 0.1511 0.9345
Three 0.3364 0.4271 0.4107 0.9009 0.5207 0.4082
Bar One 0.9892 0.4595 0.1485 0.1456 0.9935 0.1386
Two 0.3187 0.7908 0.2947 0.7354 0.5759 0.9102
Three 0.0499 0.1865 0.8113 0.4815 0.1427 0.3322
但是您将失去一些功能(例如,使用 .append()
方法)。根据您的需要,这可能是问题,也可能不是问题。
关于python - 使用双轴 MultiIndexed 将 Pandas DataFrame 存储到 HDF5,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36257665/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!