- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在 Python v2.7 中使用 tensorflow 0.8.0。我的 IDE 是 PyCharm,我的操作系统是 Linux Ubuntu 14.04
我注意到以下代码会导致我的计算机死机和/或崩溃:
# you will need these files!
# https://www.kaggle.com/c/digit-recognizer/download/train.csv
# https://www.kaggle.com/c/digit-recognizer/download/test.csv
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# read in the image data from the csv file
# the format is: imagelabel pixel0 pixel1 ... pixel783 (there are 42,000 rows like this)
data = pd.read_csv('../train.csv')
labels = data.iloc[:,:1].values.ravel() # shape = (42000, 1)
labels_count = np.unique(labels).shape[0] # = 10
images = data.iloc[:,1:].values # shape = (42000, 784)
images = images.astype(np.float64)
image_size = images.shape[1]
image_width = image_height = np.sqrt(image_size).astype(np.int32) # since these images are sqaure... hieght = width
# turn all the gray-pixel image-values into percentages of 255
# a 1.0 means a pixel is 100% black, and 0.0 would be a pixel that is 0% black (or white)
images = np.multiply(images, 1.0/255)
# create oneHot vectors from the label #s
oneHots = tf.one_hot(labels, labels_count, 1, 0) #shape = (42000, 10)
#split up the training data even more (into validation and train subsets)
VALIDATION_SIZE = 3167
validationImages = images[:VALIDATION_SIZE]
validationLabels = labels[:VALIDATION_SIZE]
trainImages = images[VALIDATION_SIZE:]
trainLabels = labels[VALIDATION_SIZE:]
# ------------- Building the NN -----------------
# set up our weights (or kernals?) and biases for each pixel
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(.1, shape=shape, dtype=tf.float32)
return tf.Variable(initial)
# convolution
def conv2d(x, W):
return tf.nn.conv2d(x, W, [1,1,1,1], 'SAME')
# pooling
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# placeholder variables
# images
x = tf.placeholder('float', shape=[None, image_size])
# labels
y_ = tf.placeholder('float', shape=[None, labels_count])
# first convolutional layer
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
# turn shape(40000,784) into (40000,28,28,1)
image = tf.reshape(trainImages, [-1,image_width , image_height,1])
image = tf.cast(image, tf.float32)
# print (image.get_shape()) # =>(40000,28,28,1)
h_conv1 = tf.nn.relu(conv2d(image, W_conv1) + b_conv1)
# print (h_conv1.get_shape()) # => (40000, 28, 28, 32)
h_pool1 = max_pool_2x2(h_conv1)
# print (h_pool1.get_shape()) # => (40000, 14, 14, 32)
# second convolutional layer
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
#print (h_conv2.get_shape()) # => (40000, 14,14, 64)
h_pool2 = max_pool_2x2(h_conv2)
#print (h_pool2.get_shape()) # => (40000, 7, 7, 64)
# densely connected layer
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
# (40000, 7, 7, 64) => (40000, 3136)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#print (h_fc1.get_shape()) # => (40000, 1024)
# dropout
keep_prob = tf.placeholder('float')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
print h_fc1_drop.get_shape()
#readout layer for deep neural net
W_fc2 = weight_variable([1024,labels_count])
b_fc2 = bias_variable([labels_count])
print b_fc2.get_shape()
mull= tf.matmul(h_fc1_drop, W_fc2)
print mull.get_shape()
print
mull2 = mull + b_fc2
print mull2.get_shape()
y = tf.nn.softmax(mull2)
# dropout
keep_prob = tf.placeholder('float')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
sess = tf.Session()
sess.run(tf.initialize_all_variables())
print sess.run(mull[0,2])
激光线导致崩溃:
打印 sess.run(mull[0,2])
这基本上是一个非常大的二维数组中的一个位置。 sess.run 的某些原因导致了它。我还收到一个脚本问题弹出窗口……某种谷歌脚本(想想可能是 tensorflow?)。我无法复制链接,因为我的电脑完全死机了。
最佳答案
我怀疑问题的出现是因为 mull[0, 2]
——尽管它看起来很小——依赖于非常大的计算,包括多重卷积、最大池化和大矩阵乘法;因此,要么您的计算机长时间满载,要么内存不足。 (您应该能够通过运行 top
并检查运行 TensorFlow 的 python
进程使用了哪些资源来判断是哪一个。)
计算量如此之大,是因为你的 TensorFlow 图是根据整个训练数据集 trainImages
定义的,其中包含 40000 张图像:
image = tf.reshape(trainImages, [-1,image_width , image_height,1])
image = tf.cast(image, tf.float32)
相反,根据 tf.placeholder()
定义您的网络会更有效,您可以向其提供 单个训练示例或小批量的例子。查看documentation on feeding了解更多信息。特别是,由于您只对 mull
的第 0 行感兴趣,因此您只需从 trainImages
中输入第 0 个示例并对其执行计算以生成必要的值。 (在您当前的程序中,还会计算所有其他示例的结果,然后在最终的切片运算符中丢弃。)
关于python - 使用 sess.run() 时 Tensorflow 崩溃,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37504470/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!