- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试规范化我的数据集,它是 1.7 GB
。我有 14Gig RAM
,很快就达到了极限。
这发生在计算训练数据的 mean/std
时。训练数据加载到RAM(13.8Gig)
时占用了大部分内存,因此计算了平均值,但是当它到达下一行时计算std
,它崩溃了。
遵循脚本:
import caffe
import leveldb
import numpy as np
from caffe.proto import caffe_pb2
import cv2
import sys
import time
direct = 'examples/svhn/'
db_train = leveldb.LevelDB(direct+'svhn_train_leveldb')
db_test = leveldb.LevelDB(direct+'svhn_test_leveldb')
datum = caffe_pb2.Datum()
#using the whole dataset for training which is 604,388
size_train = 604388 #normal training set is 73257
size_test = 26032
data_train = np.zeros((size_train, 3, 32, 32))
label_train = np.zeros(size_train, dtype=int)
print 'Reading training data...'
i = -1
for key, value in db_train.RangeIter():
i = i + 1
if i % 1000 == 0:
print i
if i == size_train:
break
datum.ParseFromString(value)
label = datum.label
data = caffe.io.datum_to_array(datum)
data_train[i] = data
label_train[i] = label
print 'Computing statistics...'
print 'calculating mean...'
mean = np.mean(data_train, axis=(0,2,3))
print 'calculating std...'
std = np.std(data_train, axis=(0,2,3))
#np.savetxt('mean_svhn.txt', mean)
#np.savetxt('std_svhn.txt', std)
print 'Normalizing training'
for i in range(3):
print i
data_train[:, i, :, :] = data_train[:, i, :, :] - mean[i]
data_train[:, i, :, :] = data_train[:, i, :, :]/std[i]
print 'Outputting training data'
leveldb_file = direct + 'svhn_train_leveldb_normalized'
batch_size = size_train
# create the leveldb file
db = leveldb.LevelDB(leveldb_file)
batch = leveldb.WriteBatch()
datum = caffe_pb2.Datum()
for i in range(size_train):
if i % 1000 == 0:
print i
# save in datum
datum = caffe.io.array_to_datum(data_train[i], label_train[i])
keystr = '{:0>5d}'.format(i)
batch.Put( keystr, datum.SerializeToString() )
# write batch
if(i + 1) % batch_size == 0:
db.Write(batch, sync=True)
batch = leveldb.WriteBatch()
print (i + 1)
# write last batch
if (i+1) % batch_size != 0:
db.Write(batch, sync=True)
print 'last batch'
print (i + 1)
#explicitly freeing memory to avoid hitting the limit!
#del data_train
#del label_train
print 'Reading test data...'
data_test = np.zeros((size_test, 3, 32, 32))
label_test = np.zeros(size_test, dtype=int)
i = -1
for key, value in db_test.RangeIter():
i = i + 1
if i % 1000 == 0:
print i
if i ==size_test:
break
datum.ParseFromString(value)
label = datum.label
data = caffe.io.datum_to_array(datum)
data_test[i] = data
label_test[i] = label
print 'Normalizing test'
for i in range(3):
print i
data_test[:, i, :, :] = data_test[:, i, :, :] - mean[i]
data_test[:, i, :, :] = data_test[:, i, :, :]/std[i]
#Zero Padding
#print 'Padding...'
#npad = ((0,0), (0,0), (4,4), (4,4))
#data_train = np.pad(data_train, pad_width=npad, mode='constant', constant_values=0)
#data_test = np.pad(data_test, pad_width=npad, mode='constant', constant_values=0)
print 'Outputting test data'
leveldb_file = direct + 'svhn_test_leveldb_normalized'
batch_size = size_test
# create the leveldb file
db = leveldb.LevelDB(leveldb_file)
batch = leveldb.WriteBatch()
datum = caffe_pb2.Datum()
for i in range(size_test):
# save in datum
datum = caffe.io.array_to_datum(data_test[i], label_test[i])
keystr = '{:0>5d}'.format(i)
batch.Put( keystr, datum.SerializeToString() )
# write batch
if(i + 1) % batch_size == 0:
db.Write(batch, sync=True)
batch = leveldb.WriteBatch()
print (i + 1)
# write last batch
if (i+1) % batch_size != 0:
db.Write(batch, sync=True)
print 'last batch'
print (i + 1)
如何让它消耗更少的内存以便我可以运行脚本?
最佳答案
为什么不计算原始数据子集的统计数据?例如,这里我们只计算 100 个点的均值和标准差:
sample_size = 100
data_train = np.random.rand(1000, 20, 10, 10)
# Take subset of training data
idxs = np.random.choice(data_train.shape[0], sample_size)
data_train_subset = data_train[idxs]
# Compute stats
mean = np.mean(data_train_subset, axis=(0,2,3))
std = np.std(data_train_subset, axis=(0,2,3))
如果您的数据是 1.7Gb,您不太可能需要所有数据来准确估计均值和标准差。
此外,您能否在数据类型中减少位数?我不确定 caffe.io.datum_to_array
返回什么数据类型,但你可以这样做:
data = caffe.io.datum_to_array(datum).astype(np.float32)
确保数据是float32
格式。 (如果数据当前是 float64
,那么这将为您节省一半的空间)。
关于python - 我怎样才能解决这个脚本中的内存限制?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39892920/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!