- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在处理 Mint 交易数据,并尝试将每个类别的值汇总到它的父类别中。
我有一个从我所有的 Mint 交易创建的数据框 mint_data:
mint_data = tranactions_data.pivot(index='Category', columns='Date', values='Amount')
还有一个带有 Category:Parent 对的字典(这使用 xlwings 从 excel 表中提取)
cat_parent = cats_sheet.range('A1').expand().options(dict).value
我不确定如何循环遍历 mint_data df 并将金额汇总到父类别中。我想保持数据框格式完全相同,只是替换父值。
这是一个例子:
A B C D E
par_a 0 0 5 0 0
cat1a 5 2 3 2 1
cat2a 0 1 2 1 0
par_b 1 0 1 1 2
cat1b 0 1 2 1 0
cat2b 1 1 1 1 1
cat3b 0 1 2 1 0
我也有一个字典
{'par_a': 'par_a',
'cat1a': 'par_a',
'cat2a': 'par_a',
'par_b': 'par_b',
'cat1b': 'par_b',
'cat2b': 'par_b',
'cat3b': 'par_b'}
我正在尝试让数据框结束
A B C D E
par_a 5 3 10 3 1
cat1a 5 2 3 2 1
cat2a 0 1 2 1 0
par_b 2 3 6 4 3
cat1b 0 1 2 1 0
cat2b 1 1 1 1 1
cat3b 0 1 2 1 0
最佳答案
让我们将您的字典称为“dct”,然后创建一个映射到父字典的新列:
>>> df['parent'] = df.reset_index()['index'].map(dct).values
A B C D E parent
par_a 0 0 5 0 0 par_a
cat1a 5 2 3 2 1 par_a
cat2a 0 1 2 1 0 par_a
par_b 1 0 1 1 2 par_b
cat1b 0 1 2 1 0 par_b
cat2b 1 1 1 1 1 par_b
cat3b 0 1 2 1 0 par_b
然后按父级求和:
>>> df_sum = df.groupby('parent').sum()
A B C D E
parent
par_a 5 3 10 3 1
par_b 2 3 6 4 3
在许多情况下,您会止步于此,但由于您想要合并父/子数据,因此需要某种合并。 combine_first
在这里会很好地工作,因为它会选择性地按照您想要的方向更新:
>>> df_new = df_sum.combine_first(df)
A B C D E parent
cat1a 5.0 2.0 3.0 2.0 1.0 par_a
cat1b 0.0 1.0 2.0 1.0 0.0 par_b
cat2a 0.0 1.0 2.0 1.0 0.0 par_a
cat2b 1.0 1.0 1.0 1.0 1.0 par_b
cat3b 0.0 1.0 2.0 1.0 0.0 par_b
par_a 5.0 3.0 10.0 3.0 1.0 par_a
par_b 2.0 3.0 6.0 4.0 3.0 par_b
您在评论中提到了多索引,因此您可能更愿意像这样组织它:
>>> df_new.reset_index().set_index(['parent','index']).sort_index()
A B C D E
parent index
par_a cat1a 5.0 2.0 3.0 2.0 1.0
cat2a 0.0 1.0 2.0 1.0 0.0
par_a 5.0 3.0 10.0 3.0 1.0
par_b cat1b 0.0 1.0 2.0 1.0 0.0
cat2b 1.0 1.0 1.0 1.0 1.0
cat3b 0.0 1.0 2.0 1.0 0.0
par_b 2.0 3.0 6.0 4.0 3.0
关于python - 将 DataFrame 中的值求和到父索引中 - Python/Pandas,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40557822/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!