gpt4 book ai didi

python - 使用 scipy 查找样条曲线的平滑度

转载 作者:行者123 更新时间:2023-11-28 18:25:09 60 4
gpt4 key购买 nike

考虑以下示例:

import numpy as np
import math
import matplotlib.pyplot as plt
from scipy import interpolate
xs = np.linspace(1,10,500)
ys = [0.92 * x ** 2.3 + 0.0132 * x ** 4 + 0.0743 * (x - 9) ** 3 - 4 * (x -3) ** 2 + 80 * math.sin(math.sin(x)) + 10 * math.sin(x*5) + 1.2* np.random.normal(-4,4,1) for x in xs]
ys[200] = ys[200] + 130
ys[201] = ys[201] + 135
ys[202] = ys[202] + 129
ys[203] = ys[203] + 128
ys[204] = ys[204] + 131
ys[205] = ys[205] + 130
ys[206] = ys[206] + 129
ys[207] = ys[207] + 129
ys[208] = ys[208] + 128
ys[209] = ys[209] + 130

如果我在此时绘制 xsys,它会生成一个漂亮的图形: a oisy dataset for testing

现在我正在使用 scipy.interpolate.splrep 将样条曲线拟合到该数据。我使用了两个不同的样条曲线来拟合两个不同的数据段:

tck = interpolate.splrep(xs[0:199], ys[0:199], s = 1000)
ynew2 = interpolate.splev(xs[0:199], tck, der = 0)

和:

tck = interpolate.splrep(xs[210:500], ys[210:500], s = 9000)
ynew3 = interpolate.splev(xs[210:500], tck, der = 0)

然后我们有: Sample spline fit of the same data as above

现在我想以编程方式检测拟合质量。拟合既不应该太直 - 即保留特征,也不应该将噪声变化“过度检测”为特征。

我计划使用馈送到 ANN 的峰值计数器。

然而,在这一点上,我的问题是:

  • scipy/numpy 是否有一个内置函数,我可以在其中输入 splrep 的输出,它会在任何特定时间间隔计算最小值或最大值以及最大值/最小值的密度?

注意:
我知道 R**2 值,我正在寻找另一种方法来检测特征的保留情况。

最佳答案

SciPy 没有找到三次样条的临界点的方法。我们最近的 sproot找到三次样条的根。为了让它在这里有用,我们必须拟合 4 阶样条,以便导数是三次样条。这就是我在下面所做的

from scipy.interpolate import splrep, splev, splder, sproot

tck1 = splrep(xs[0:199], ys[0:199], k=4, s=1000)
tck2 = splrep(xs[210:500], ys[210:500], k=4, s=9000)
roots1 = sproot(splder(tck1), 1000) # 1000 is an upper bound for the number of roots
roots2 = sproot(splder(tck2), 1000)

x1 = np.linspace(xs[0], xs[198], 1000) # plot both splines
plt.plot(x1, splev(x1, tck1))
x2 = np.linspace(xs[210], xs[499], 1000)
plt.plot(x2, splev(x2, tck2))

plt.plot(roots1, splev(roots1, tck1), 'ro') # plot their max/min points
plt.plot(roots2, splev(roots2, tck2), 'ro')
plt.show()

critical points

区别很明显。

您还可以找到任何特定区间内的根数,例如 [3, 4]:

np.where((3 <= roots1) & (roots1 <= 4))[0].size    # 29

或等效地,np.sum((3 <= roots1) & (roots1 <= 4))

关于python - 使用 scipy 查找样条曲线的平滑度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41931079/

60 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com