- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 Tensorflow 框架学习情绪分析。
我正在学习来自 pythonprogramming_tutorial(create_feature_sets_and_labels) 的教程和 pythonprogramming_tutorial(train_test)
在create_sentiment_featuresets.py(第一个链接)中,我只添加了一个方法来获取词典并修改了给定的代码sentiment_demo.py(第二个链接) ) 测试给定输入字符串的情绪。
create_sentiment_featuresets.py
import nltk
from nltk.tokenize import word_tokenize
import numpy as np
import random
import pickle
from collections import Counter
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
hm_lines = 100000
def create_lexicon(pos, neg):
lexicon = []
with open(pos, 'r') as f:
contents = f.readlines() # readline vs strip
for l in contents[:len(contents)]:
l= l.decode('utf-8')
all_words = word_tokenize(l)
lexicon += list(all_words)
f.close()
with open(neg, 'r') as f:
contents = f.readlines() # readline vs strip
for l in contents[:len(contents)]:
l= l.decode('utf-8')
all_words = word_tokenize(l)
lexicon += list(all_words)
f.close()
lexicon = [lemmatizer.lemmatize(i) for i in lexicon]
w_counts = Counter(lexicon)
#print(len(w_counts))
l2 = []
for w in w_counts:
if 1000 > w_counts[w] > 50:
l2.append(w)
#print(len(l2))
#print(l2)
print("Lexicon length create_lexicon: ",len(lexicon))
return l2
def sample_handling(sample, lexicon, classification):
featureset = []
print("Lexicon length Sample handling: ",len(lexicon))
with open(sample, 'r') as f:
contents = f.readlines()
for l in contents[:len(contents)]:
l= l.decode('utf-8')
current_words = word_tokenize(l.lower())
current_words= [lemmatizer.lemmatize(i) for i in current_words]
features = np.zeros(len(lexicon))
for word in current_words:
if word.lower() in lexicon:
index_value = lexicon.index(word.lower())
features[index_value] +=1
features = list(features)
featureset.append([features, classification])
f.close()
print("Feature SET------")
print(len(featureset))
return featureset
def create_feature_sets_and_labels(pos, neg, test_size = 0.1):
global m_lexicon
m_lexicon = create_lexicon(pos, neg)
features = []
features += sample_handling(pos, m_lexicon, [1,0])
features += sample_handling(neg, m_lexicon, [0,1])
random.shuffle(features)
features = np.array(features)
testing_size = int(test_size * len(features))
train_x = list(features[:,0][:-testing_size])
#print("TRAIN_X", train_x)
train_y = list(features[:,1][:-testing_size])
#print("TRAIN_Y", train_y)
test_x = list(features[:,0][-testing_size:])
test_y = list(features[:,1][-testing_size:])
return train_x, train_y, test_x, test_y
def get_lexicon():
global m_lexicon
return m_lexicon
为了训练和测试,我使用了第一个链接中给出的 pos.txt 和 neg.txt。文件分别包含5000个正面和负面的句子
下面是我的sentiment_demo.py:
from create_sentiment_featuresets import create_feature_sets_and_labels
from create_sentiment_featuresets import get_lexicon
import tensorflow as tf
import pickle
import numpy as np
# extras for testing
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
#- end extras
train_x, train_y, test_x, test_y = create_feature_sets_and_labels('pos.txt', 'neg.txt')
n_nodes_hl1 = 1500
n_nodes_hl2 = 1500
n_nodes_hl3 = 1500
n_classes = 2
batch_size = 100
hm_epochs = 5
x = tf.placeholder('float')
y = tf.placeholder('float')
hidden_1_layer = {'f_fum': n_nodes_hl1,
'weight': tf.Variable(tf.random_normal([len(train_x[0]), n_nodes_hl1])),
'bias': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'f_fum': n_nodes_hl2,
'weight': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'bias': tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'f_fum': n_nodes_hl3,
'weight': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'bias': tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'f_fum': None,
'weight': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'bias': tf.Variable(tf.random_normal([n_classes]))}
def nueral_network_model(data):
l1 = tf.add(tf.matmul(data, hidden_1_layer['weight']), hidden_1_layer['bias'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weight']), hidden_2_layer['bias'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weight']), hidden_3_layer['bias'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weight']) + output_layer['bias']
return output
def train_neural_network(x):
prediction = nueral_network_model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits= prediction, labels= y))
optimizer = tf.train.AdamOptimizer(learning_rate= 0.001).minimize(cost)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
i = 0
while i < len(train_x):
start = i
end = i+ batch_size
batch_x = np.array(train_x[start: end])
batch_y = np.array(train_y[start: end])
_, c = sess.run([optimizer, cost], feed_dict= {x: batch_x, y: batch_y})
epoch_loss += c
i+= batch_size
print('Epoch', epoch+ 1, 'completed out of ', hm_epochs, 'loss:', epoch_loss)
correct= tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:', accuracy.eval({x:test_x, y:test_y}))
# testing ------Trying to predict the sentiment for an input string--------
m_lexicon= get_lexicon()
print('Lexicon length: ',len(m_lexicon))
input_data= "He is an idiot"
current_words= word_tokenize(input_data.lower())
current_words = [lemmatizer.lemmatize(i) for i in current_words]
features = np.zeros(len(m_lexicon))
for word in current_words:
if word.lower() in m_lexicon:
index_value = m_lexicon.index(word.lower())
features[index_value] +=1
features = np.array(list(features))
print('features length: ',len(features))
result = sess.run(tf.argmax(prediction.eval(feed_dict={x:features}), 1))
print('RESULT: ', result)
if result[0] == 0:
print('Positive: ', input_data)
elif result[0] == 1:
print('Negative: ', input_data)
train_neural_network(x)
程序一直运行到 epoch loss 的打印,之后出现以下错误:
('Epoch', 1, 'completed out of ', 5, 'loss:', 1289814.4057617188)
('Epoch', 2, 'completed out of ', 5, 'loss:', 457882.97705078125)
('Epoch', 3, 'completed out of ', 5, 'loss:', 243073.83074951172)
('Epoch', 4, 'completed out of ', 5, 'loss:', 245525.22399902344)
('Epoch', 5, 'completed out of ', 5, 'loss:', 233219.91000366211)
('Accuracy:', 0.59287059)
('Lexicon length: ', 423)
('features length: ', 423)
Traceback (most recent call last):
File "sentiment_demo.py", line 110, in <module>
train_neural_network(x)
File "sentiment_demo.py", line 102, in train_neural_network
result = sess.run(tf.argmax(prediction.eval(feed_dict={x:features}), 1))
File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 569, in eval
return _eval_using_default_session(self, feed_dict, self.graph, session)
File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 3741, in _eval_using_default_session
return session.run(tensors, feed_dict)
File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 778, in run
run_metadata_ptr)
File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 982, in _run
feed_dict_string, options, run_metadata)
File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1032, in _do_run
target_list, options, run_metadata)
File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1052, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: In[0] is not a matrix
[[Node: MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](_recv_Placeholder_0/_23, Variable/read)]]
[[Node: add/_25 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_4_add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op u'MatMul', defined at:
File "sentiment_demo.py", line 110, in <module>
train_neural_network(x)
File "sentiment_demo.py", line 58, in train_neural_network
prediction = nueral_network_model(x)
File "sentiment_demo.py", line 44, in nueral_network_model
l1 = tf.add(tf.matmul(data, hidden_1_layer['weight']), hidden_1_layer['bias'])
File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/ops/math_ops.py", line 1801, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_math_ops.py", line 1263, in _mat_mul
transpose_b=transpose_b, name=name)
File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 768, in apply_op
op_def=op_def)
File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1228, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): In[0] is not a matrix
[[Node: MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](_recv_Placeholder_0/_23, Variable/read)]]
[[Node: add/_25 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_4_add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
上面的错误具体指向这个:
Caused by op u'MatMul', defined at:
File "sentiment_demo.py", line 110, in <module>
train_neural_network(x)
File "sentiment_demo.py", line 58, in train_neural_network
prediction = nueral_network_model(x)
File "sentiment_demo.py", line 44, in nueral_network_model
l1 = tf.add(tf.matmul(data, hidden_1_layer['weight']), hidden_1_layer['bias'])
我是新手,无法修复它。
最佳答案
看起来您的特征
形状不对。请试试这个:
features = np.array(list(features)).reshape(1,-1)
您的模型接受批量数据,因此如果您只想运行一个预测,则需要将其重新整形为一批 1。祝你好运!
关于python - 预测情绪分析时出错 Tensorflow NLTK,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44306860/
我正在使用 node.js 和 mocha 单元测试,并且希望能够通过 npm 运行测试命令。当我在测试文件夹中运行 Mocha 测试时,测试运行成功。但是,当我运行 npm test 时,测试给出了
我的文本区域中有这些标签 ..... 我正在尝试使用 replaceAll() String 方法替换它们 text.replaceAll("", ""); text.replaceAll("", "
早上好,我是 ZXing 的新手,当我运行我的应用程序时出现以下错误: 异常Ljava/lang/NoClassDefFoundError;初始化 ICOM/google/zxing/client/a
我正在制作一些哈希函数。 它的源代码是... #include #include #include int m_hash(char *input, size_t in_length, char
我正在尝试使用 Spritekit 在 Swift 中编写游戏。目的是带着他的角色迎面而来的矩形逃跑。现在我在 SKPhysicsContactDelegate (didBegin ()) 方法中犯了
我正在尝试创建一个用于导入 CSV 文件的按钮,但出现此错误: actionPerformed(java.awt.event.ActionEvent) in cannot implement
请看下面的代码 public List getNames() { List names = new ArrayList(); try { createConnection(); Sta
我正在尝试添加一个事件以在“dealsArchive”表中创建一个条目,然后从“deals”表中删除该条目。它需要在特定时间执行。 这是我正在尝试使用的: DELIMITER $$ CREATE EV
我试图将两个存储过程的表结果存储到 phpmyadmin 例程窗口中的单个表中,这给了我 mariadb 语法错误。单独调用存储过程给出了结果。 存储过程代码 BEGIN CREATE TABLE t
我想在 videoview 中加载视频之前有一个进度条。但是我收到以下错误。我还添加了所有必要的导入。 我在 ANDROID 中使用 AIDE 这是我的代码 public class MainActi
我已经使用了 AsyncTask,但我不明白为什么在我的设备 (OS 4.0) 上测试时仍然出现错误。我的 apk 构建于 2.3.3 中。我想我把代码弄错了,但我不知道我的错误在哪里。任何人都请帮助
我在测试 friend 网站的安全性时,通过在 URL 末尾添加 ' 发现了 SQL 注入(inject)漏洞该网站是用zend框架构建的我遇到的问题是 MySQL -- 中的注释语法不起作用,因此页
我正在尝试使用堆栈溢出答案之一的交互式信息窗口。 链接如下: interactive infowindow 但是我在代码中使用 getMap() 时遇到错误。虽然我尝试使用 getMapAsync 但
当我编译以下代码时出现错误: The method addMouseListener(Player) is undefined for the type Player 代码: import java.
我是 Android 开发的初学者。我正在开发一个接收 MySql 数据然后将其保存在 SQLite 中的应用程序。 我将 Json 用于同步状态,以便我可以将未同步数据的数量显示为要同步的待处理数据
(这里是Hello world级别的自动化测试人员) 我正在尝试下载一个文件并将其重命名以便于查找。我收到一个错误....这是代码 @Test public void allDownload(
我只是在写另一个程序。并使用: while (cin) words.push_back(s); words是string的vector,s是string。 我的 RAM 使用量在 4 或 5
我是 AngularJS 的新手,我遇到了一个问题。我有一个带有提交按钮的页面,当我单击提交模式时必须打开并且来自 URL 的数据必须存在于模式中。现在,模式打开但它是空的并且没有从 URL 获取数据
我正在尝试读取一个文件(它可以包含任意数量的随机数字,但不会超过 500 个)并将其放入一个数组中。 稍后我将需要使用数组来做很多事情。 但到目前为止,这一小段代码给了我 no match for o
有些人在使用 make 命令进行编译时遇到了问题,所以我想我应该在这里尝试一下,我已经在以下操作系统的 ubuntu 32 位和挤压 64 位上尝试过 我克隆了 git 项目 https://gith
我是一名优秀的程序员,十分优秀!