- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有两个数据帧,df1
存储在 pd.HDFStore
对象中,另一个要附加到数据帧。
store = pd.HDFStore('dataframe_store.h5')
df1 = pd.DataFrame(np.empty((100, 5)))
df2 = pd.DataFrame(np.empty((100, 5)))
store['df1'] = df1
实际上,我希望最终结果等于...
store['df1'] = df1.append(df2)
我想将 df2
附加到存储的 df1
,而不是用新数据帧完全覆盖 HDFStore
对象。这可能吗?
此外,当我运行以下代码时,我返回 ValueError can only append to Tables
...这是为什么?
df = pd.DataFrame(np.empty((1000, 5)))
df2 = pd.DataFrame(np.empty((1000, 5)))
store = pd.HDFStore('store.h5')
store['df'] = df
store.append('df', df2)
最佳答案
根据 the docs (我的重点):
HDFStore supports another PyTables format on disk, the table format. Conceptually a table is shaped very much like a DataFrame, with rows and columns. A table may be appended to in the same or other sessions. In addition, delete & query type operations are supported. This format is specified by format='table' or format='t' to append or put or to_hdf
New in version 0.13.
This format can be set as an option as well pd.set_option('io.hdf.default_format','table') to enable put/append/to_hdf to by default store in the table format.
In [361]: store = pd.HDFStore('store.h5')
In [362]: df1 = df[0:4]
In [363]: df2 = df[4:]
# append data (creates a table automatically)
In [364]: store.append('df', df1)
In [365]: store.append('df', df2)
In [366]: store
Out[366]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
# select the entire object
In [367]: store.select('df')
Out[367]:
A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109
# the type of stored data
In [368]: store.root.df._v_attrs.pandas_type
Out[368]: 'frame_table'
Note: You can also create a table by passing format='table' or format='t' to a put operation.
关于python - HDFStore 更新存储的 HDF5 python pandas 数据帧,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44986027/
我将所有数据都放入了 HDFStore(是的!),但是如何从中取出数据.. 我在我的 HDFStore 中保存了 6 个数据帧作为 frame_table。这些表格中的每一个看起来如下所示,但长度各不
我确定这可能非常简单,但我无法弄清楚如何通过日期时间索引对 Pandas HDFStore 表进行切片以获得特定范围的行。 我有一个看起来像这样的表: mdstore = pd.HDFStore(st
我有一个 pandas HDFStore,我尝试从中进行选择。我想在一个大的 np.array 中选择两个时间戳之间的数据和一个 id。以下代码可以工作,但仅在查询列表中的成员身份时才会占用过多内存。
我对 pandas' HDFStore 有一些问题速度太慢了,不幸的是我无法从这里的其他问题中找到令人满意的解决方案。 情况 我有一个很大的 DataFrame,其中大部分包含 float ,有时包含
我对 pandas' HDFStore 有一些问题速度太慢了,不幸的是我无法从这里的其他问题中找到令人满意的解决方案。 情况 我有一个很大的 DataFrame,其中大部分包含 float ,有时包含
清楚我做错了什么吗? 我正在尝试 pandas HDFStore.select start 和 stop 选项,但没有什么区别。 我使用的命令是: import pandas as pd hdf =
我希望将我读入的两个表存储在数据框中。 我正在将 h5 文件读入我的代码中: with pd.HDFStore(directory_path) as store: self.df = stor
我在平面文件中有数 TB 的数据(在子集中),我想使用 Python Pandas/Pytables/H5py 将这些数据转换为 HDF5 以加快查询和搜索速度。我计划使用 to_hdf 之类的方法转
我有一个 pandas HDFStore,我试图从中进行选择。我想在一个大的 np.array 中选择两个带有 id 的时间戳之间的数据。以下代码有效,但仅在查询列表中的成员资格时占用过多内存。如果我
问题:如何创建一个允许对 pandas HDFStore 对象中的多个列进行迭代的生成器? 我正在尝试为 pandas HDFStore 对象创建一个包装类。我试图实现的功能之一是能够按给定的 blo
我在具有多索引的 HDFStore 中将frame_table 称为“数据”。在 DataFrame 中,它可能看起来像这样 var1 var2 va
以下代码片段: HDFStore = pandas.io.pytables.HDFStore lock = threading.RLock() with lock:
Pandas "Group By" Query on Large Data in HDFStore? 我已经尝试了答案中的示例,只是我希望能够按两列进行分组。 基本上,修改代码看起来像 with pd
我通过 Pandas 将大量数据帧导出到一系列 HDFStore 文件。我需要能够根据需要快速提取每个数据帧的最新记录。 设置: File path: /data/storage_X100.hdf
这很好用: cols = ['X', 'Y'] ind = [('A', 1), ('B', 2)] ind = pd.MultiIndex.from_tuples(index, names=['fo
假设我有一个 store = pd.HDFStore('cache/cache.h5') 我有一个存储的 DataFrame store['myDF'] 如果在我的代码中,我这样做: a = stor
我是 pytables 的新手,对存储压缩的 pandas DataFrame 有疑问。我当前的代码是: import pandas # HDF5 file name H5name="C:\\MyDi
我想知道为什么 HDFStore 会在 pandas 中的字符串列上发出警告。我认为它可能是我真实数据库中的 NaN,但在这里尝试它会给我两个列的警告,即使一个没有混合并且只是字符串。 使用 .13.
我正在试验不同的 pandas 友好存储方案来存储报价数据。迄今为止最快的(就读取和写入而言)是使用具有 blosc 压缩和“固定”格式的 HDFStore。 store = pd.HDFStore(
我有以下 DataFrame,它作为名为数据的 frame_table 存储在 HDFStore 对象中: shipmentid qty catid
我是一名优秀的程序员,十分优秀!