- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在为特定任务编写一个二元分类器,而不是在输出层使用 2 个神经元,我只想使用一个带有 S 形函数的神经元,如果它低于 0.5,则基本上输出 0 类,否则输出 1 类。
图像被加载、调整为 64x64 并展平,以创建问题的复制品)。数据加载的代码将出现在最后。我创建占位符。
x = tf.placeholder('float',[None, 64*64])
y = tf.placeholder('float',[None, 1])
并定义模型如下。
def create_model_linear(data):
fcl1_desc = {'weights': weight_variable([4096,128]), 'biases': bias_variable([128])}
fcl2_desc = {'weights': weight_variable([128,1]), 'biases': bias_variable([1])}
fc1 = tf.nn.relu(tf.matmul(data, fcl1_desc['weights']) + fcl1_desc['biases'])
fc2 = tf.nn.sigmoid(tf.matmul(fc1, fcl2_desc['weights']) + fcl2_desc['biases'])
return fc2
weight_variable
和 bias_variable
函数只返回给定形状的 tf.Variable()
。 (他们的代码也在最后。)
然后我定义训练函数如下。
def train(x, hm_epochs):
prediction = create_model_linear(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits = prediction, labels = y) )
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
batch_size = 100
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
i = 0
while i < len(train_x):
start = i
end = i + batch_size
batch_x = train_x[start:end]
batch_y = train_y[start:end]
_, c = sess.run([optimizer, cost], feed_dict = {x:batch_x, y:batch_y})
epoch_loss += c
i+=batch_size
print('Epoch', epoch+1, 'completed out of', hm_epochs,'loss:',epoch_loss)
correct = tf.greater(prediction,[0.5])
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
i = 0
acc = []
while i < len(train_x):
acc +=[accuracy.eval({x:train_x[i:i+1000], y:train_y[i:i + 1000]})]
i+=1000
print sum(acc)/len(acc)
train(x, 10)
的输出是
('Epoch', 1, 'completed out of', 10, 'loss:', 0.0) ('Epoch', 2, 'completed out of', 10, 'loss:', 0.0) ('Epoch', 3, 'completed out of', 10, 'loss:', 0.0) ('Epoch', 4, 'completed out of', 10, 'loss:', 0.0) ('Epoch', 5, 'completed out of', 10, 'loss:', 0.0) ('Epoch', 6, 'completed out of', 10, 'loss:', 0.0) ('Epoch', 7, 'completed out of', 10, 'loss:', 0.0) ('Epoch', 8, 'completed out of', 10, 'loss:', 0.0) ('Epoch', 9, 'completed out of', 10, 'loss:', 0.0) ('Epoch', 10, 'completed out of', 10, 'loss:', 0.0)
0.0 What am I missing?
这里是所有实用函数的 promise 代码:
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def getLabel(wordlabel):
if wordlabel == 'Class_A':
return [1]
elif wordlabel == 'Class_B':
return [0]
else:
return -1
def loadImages(pathToImgs):
images = []
labels = []
filenames = os.listdir(pathToImgs)
imgCount = 0
for i in tqdm(filenames):
wordlabel = i.split('_')[1]
oneHotLabel = getLabel(wordlabel)
img = cv2.imread(pathToImgs + i,cv2.IMREAD_GRAYSCALE)
if oneHotLabel != -1 and type(img) is np.ndarray:
images += [cv2.resize(img,(64,64)).flatten()]
labels += [oneHotLabel]
imgCount+=1
print imgCount
return (images,labels)
最佳答案
我认为您应该使用 tf.nn.sigmoid_cross_entropy_with_logits
而不是 tf.nn.softmax_cross_entropy_with_logits
因为您在输出层中使用了 sigmoid 和 1 个神经元。
您还需要从 create_model_linear
中的最后一层移除 sigmoid并且,您没有使用 y
标签,准确性必须采用以下形式。
correct = tf.equal(tf.greater(tf.nn.sigmoid(prediction),[0.5]),tf.cast(y,'bool'))
关于python - 使用单输出神经元tensorflow的神经网络时loss和accuracy都是0,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45459042/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!