gpt4 book ai didi

python - 使用 curve_fit 的多维拟合,其中函数在网格上

转载 作者:行者123 更新时间:2023-11-28 18:13:41 26 4
gpt4 key购买 nike

我正在尝试拟合在 x,y 网格上定义的函数。问题是 curve_fit 只允许数据点是一维数组,而在网格上定义的函数是二维数组。下面的代码说明了我的意思:

import numpy as np
from scipy.optimize import curve_fit

def myfunc(VARS,a,b):
X,Y = VARS
return a*(X**b + Y**b)

x = np.linspace(0,1,100)
y = np.linspace(0,1,100)
z1 = x**2+y**2
z2 = np.zeros([100,100])
for i in range(100):
for j in range(100):
z2[i][j] = x[i]**2 + y[j]**2
params1,pcov1 = curve_fit(myfunc, (x,y),z1,p0=(1.,1.))
print "params1: {}".format(params1)
params2,pcov2 = curve_fit(myfunc, (x,y),z2,p0=(1.,1.))

输出是

params1: [1. 2.]
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
ValueError: object too deep for desired array

---------------------------------------------------------------------------
error Traceback (most recent call last)
<ipython-input-867-ac34dcacef8e> in <module>()
14 params1,pcov1 = curve_fit(myfunc, (x,y),z1,p0=(1.,1.))
15 print "params1: {}".format(params1)
---> 16 params2,pcov2 = curve_fit(myfunc, (x,y),z2,p0=(1.,1.))

c:\python27\lib\site-packages\scipy\optimize\minpack.pyc in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)
740 # Remove full_output from kwargs, otherwise we're passing it in twice.
741 return_full = kwargs.pop('full_output', False)
--> 742 res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
743 popt, pcov, infodict, errmsg, ier = res
744 cost = np.sum(infodict['fvec'] ** 2)

c:\python27\lib\site-packages\scipy\optimize\minpack.pyc in leastsq(func, x0, args, Dfun, full_output, col_deriv, ftol, xtol, gtol, maxfev, epsfcn, factor, diag)
385 maxfev = 200*(n + 1)
386 retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol,
--> 387 gtol, maxfev, epsfcn, factor, diag)
388 else:
389 if col_deriv:

error: Result from function call is not a proper array of floats.

理想情况下,二维函数是在 x,y 的所有组合上定义的,而 curve_fit 允许的二维函数等同于

for i in range(100):
z2[i][i] = x[i]**2 + y[i]**2

因此函数未定义,例如 x=0, y=0.5

有没有办法适应网格?

最佳答案

我找到了解决办法。我使用 repeat 创建了 x 值的副本,然后创建了与此对应的 y 的硬拷贝。

import numpy as np
from scipy.optimize import curve_fit

def myfunc(VARS,a,b):
X,Y = VARS

return a*(X**b + Y**b)

x = np.linspace(0,1,100)
y = np.linspace(0,1,100)
x_rep = np.repeat(x,100)
y_rep = np.array([y for i in range(100)]).flatten()


z1 = x**2+y**2
z2 = x_rep**2 + y_rep**2

params1,pcov1 = curve_fit(myfunc, (x,y),z1,p0=(1.,1.))
print "params1: {}".format(params1)
params2,pcov2 = curve_fit(myfunc, (x_rep,y_rep),z2,p0=(1.,1.))
print "params2: {}".format(params2)

Output:
params1: [1. 2.]
params2: [1. 2.]

关于python - 使用 curve_fit 的多维拟合,其中函数在网格上,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49781991/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com