gpt4 book ai didi

python quad 集成似乎不准确

转载 作者:行者123 更新时间:2023-11-28 18:08:49 26 4
gpt4 key购买 nike

我是 python 的新手,正在尝试对函数进行数值积分。一切似乎都有效,但我得到的结果与我在 Mathematica 中得到的结果有很大不同(我知道这是正确的)。有人可以帮我弄清楚发生了什么吗?

代码如下:

def integrand(x, d, a, b, l, s, wavelength, y):
return b*(np.sinc((np.pi*a/(wavelength*s))*(y + s*b*x/l))**2)*np.cos((np.pi*d/(wavelength*s))*(y + s*b*x/l))**2


def intensity(y):
result, error = si.quad(integrand, -1/2, 1/2, epsrel = 1e-16, epsabs = 1e-16,
args=(0.0006, 0.000150, 0.000164, 0.8, 1.06, 0.0000006328, y))
return result

例如,如果我计算强度 (0),我在 Python 中得到 0.0001580120220796804,在 Mathematica 中得到 0.000158898。在 0.5% 以内,所以这似乎还可以。但是,如果我计算强度(0.001),我在 python 中得到 1.8729902318383768e-05,在 Mathematica 中得到 0.00012034,它们相差近一个数量级。请注意,我已尝试减少绝对和相对误差,但这没有任何效果。

如有任何帮助,我们将不胜感激。

这是 Mathematica 代码:

NumInt[d_, a_, b_, l_, s_, lambda_, y_] := NIntegrate[b Sinc[(a Pi/(s lambda)) (y - (s*b*
x/l))]^2 Cos[(d Pi/(s lambda)) (y - (s*b*x/l))]^2, {x, -1/2,
1/2}]

然后

NumInt[0.0006, 0.000150, 0.000164, 0.8, 1.06, 0.0000006328, 0.001]

最佳答案

numpy.sinc定义为 sin(pi*x)/(pi*x)。 Mathematica 的 Sinc函数不包括 pi 的因子。要解决此差异,请从 Python 代码的 sinc() 参数中删除 np.pi。当我进行更改时,我得到的结果与 Mathematica 一致(我修改了 intensity() 以同时返回 quad 返回的错误):

In [12]: intensity(0)
Out[12]: (0.00015889773970382816, 1.764119291800849e-18)

In [13]: intensity(0.001)
Out[13]: (0.00012034021042092513, 1.3360447239754727e-18)

关于python quad 集成似乎不准确,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51972620/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com