- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我试过这样的:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('logs', sess.graph)
for iteration in range(int(n_epochs*train_set_size/batch_size)):
x_batch, y_batch = get_next_batch(batch_size) # fetch the next training batch
sess.run(training_op, feed_dict={X: x_batch, y: y_batch})
if iteration % int(1*train_set_size/batch_size) == 0:
mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})
y_train_pred,summary1,outimage = sess.run([outputs,merged,out_img_sum], feed_dict={X: x_train,y:y_train})
y_valid_pred,summary2 = sess.run([outputs,merged], feed_dict={X: x_valid,y:y_valid})
y_test_pred,summary3 = sess.run([outputs,merged], feed_dict={X: x_test,y:y_test})
writer.add_summary(summary1, iteration*batch_size/train_set_size)
我愿意在张量板上显示 y_train
和 y_train_pred
值。我该怎么做?这些就像数组,我没有办法在 Tensorboard 上显示这些值的比较。请帮助我。
最佳答案
更新:
是的,您可以沿 x 轴绘图。你在张量板上得到错误图像的原因是因为 int(iteration*float(batch_size)/train_set_size)
总是返回相同的值(0.0001804630682330861 根据你)。我在下面创建了类似您的情况的代码(因为我没有您的数据)。而且效果很好。
import tensorflow as tf
import numpy as np
summary_writer = tf.summary.FileWriter('/tmp/test')
for iteration in range(5):
y_train_preds = np.random.rand(10)
summary = tf.Summary()
for idx, value in enumerate(y_train_preds):
summary.value.add(tag='y_train', simple_value=value)
summary_writer.add_summary(summary, iteration*len(y_train_preds)+idx)
summary_writer.close()
张量板上的输出
唯一需要注意的一点是确保 add_summary()
中的全局步骤每次都应该增加。
也许您可以尝试以下操作:我已经更新了你的代码,你也可以试试
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('logs', sess.graph)
for iteration in range(int(n_epochs*train_set_size/batch_size)):
x_batch, y_batch = get_next_batch(batch_size) # fetch the next training batch
sess.run(training_op, feed_dict={X: x_batch, y: y_batch})
if iteration % int(1*train_set_size/batch_size) == 0:
summary = tf.Summary()
mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})
y_train_pred,summary1,outimage = sess.run([outputs,merged,out_img_sum], feed_dict={X: x_train,y:y_train})
y_valid_pred,summary2 = sess.run([outputs,merged], feed_dict={X: x_valid,y:y_valid})
y_test_pred,summary3 = sess.run([outputs,merged], feed_dict={X: x_test,y:y_test})
for value in y_train:
summary.value.add(tag='y_train', simple_value=value)
for idx, value in enumerate(y_train_pred):
summary.value.add(tag='y_train_pred', simple_value=value)
writer.add_summary(summary, iteration*len(y_train_pred)+idx)
writer.add_summary(summary1, int(iteration*float(batch_size)/train_set_size))
关于python - 如何使用 python 在 Tensorboard 上显示训练值和预测值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52200075/
我正在使用 R 预测包拟合模型,如下所示: fit <- auto.arima(df) plot(forecast(fit,h=200)) 打印原始数据框和预测。当 df 相当大时,这
我正在尝试预测自有住房的中位数,这是一个行之有效的例子,给出了很好的结果。 https://heuristically.wordpress.com/2011/11/17/using-neural-ne
type="class"函数中的type="response"和predict有什么区别? 例如: predict(modelName, newdata=testData, type = "class
我有一个名为 Downloaded 的文件夹,其中包含经过训练的 CNN 模型必须对其进行预测的图像。 下面是导入图片的代码: import os images = [] for filename i
关于预测的快速问题。 我尝试预测的值是 0 或 1(它设置为数字,而不是因子),因此当我运行随机森林时: fit , data=trainData, ntree=50) 并预测: pred, data
使用 Python,我尝试使用历史销售数据来预测产品的 future 销售数量。我还试图预测各组产品的这些计数。 例如,我的专栏如下所示: Date Sales_count Department It
我是 R 新手,所以请帮助我了解问题所在。我试图预测一些数据,但预测函数返回的对象(这是奇怪的类(因子))包含低数据。测试集大小为 5886 obs。 160 个变量,当预测对象长度为 110 时..
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 6 年前。 Improve this qu
下面是我的神经网络代码,有 3 个输入和 1 个隐藏层和 1 个输出: #Data ds = SupervisedDataSet(3,1) myfile = open('my_file.csv','r
我正在开发一个 Web 应用程序,它具有全文搜索功能,可以正常运行。我想对此进行改进并向其添加预测/更正功能,这意味着如果用户输入错误或结果为 0,则会查询该输入的更正版本,而不是查询结果。基本上类似
我对时间序列还很陌生。 这是我正在处理的数据集: Date Price Location 0 2012-01-01 1771.0
我有许多可变长度的序列。对于这些,我想训练一个隐马尔可夫模型,稍后我想用它来预测(部分)序列的可能延续。到目前为止,我已经找到了两种使用 HMM 预测 future 的方法: 1) 幻觉延续并获得该延
我正在使用 TensorFlow 服务提供初始模型。我在 Azure Kubernetes 上这样做,所以不是通过更标准和有据可查的谷歌云。 无论如何,这一切都在起作用,但是我感到困惑的是预测作为浮点
我正在尝试使用 Amazon Forecast 进行一些测试。我现在尝试了两个不同的数据集,它们看起来像这样: 13,2013-03-31 19:25:00,93.10999 14,2013-03-3
使用 numpy ndarray大多数时候我们不需要担心内存布局的问题,因为结果并不依赖于它。 除非他们这样做。例如,考虑这种设置 3x2 矩阵对角线的稍微过度设计的方法 >>> a = np.zer
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我正在 R 中使用 GLMM,其中混合了连续变量和 calcategories 变量,并具有一些交互作用。我使用 MuMIn 中的 dredge 和 model.avg 函数来获取每个变量的效果估计。
我能够在 GUI 中成功导出分类器错误,但无法在命令行中执行此操作。有什么办法可以在命令行上完成此操作吗? 我使用的是 Weka 3.6.x。在这里,您可以右键单击模型,选择“可视化分类器错误”并从那
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我从 UCI 机器学习数据集库下载了一个巨大的文件。 (~300mb)。 有没有办法在将数据集加载到 R 内存之前预测加载数据集所需的内存? Google 搜索了很多,但我到处都能找到如何使用 R-p
我是一名优秀的程序员,十分优秀!