- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
目标:当模型输入为 int、float 和对象(根据 pandas 数据框)时,使用 sklearn 预测一组给定类的概率。
我正在使用 UCI 存储库中的以下数据集: Auto Dataset
我创建了一个几乎可以工作的管道:
# create transformers for the different variable types.
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
import pandas as pd
import numpy as np
data = pd.read_csv(r"C:\Auto Dataset.csv")
target = 'aspiration'
X = data.drop([target], axis = 1)
y = data[target]
integer_transformer = Pipeline(steps = [
('imputer', SimpleImputer(strategy = 'most_frequent')),
('scaler', StandardScaler())])
continuous_transformer = Pipeline(steps = [
('imputer', SimpleImputer(strategy = 'most_frequent')),
('scaler', StandardScaler())])
categorical_transformer = Pipeline(steps = [
('imputer', SimpleImputer(strategy = 'most_frequent')),
('lab_enc', OneHotEncoder(handle_unknown='ignore'))])
# Use the ColumnTransformer to apply the transformations to the correct columns in the dataframe.
integer_features = X.select_dtypes(include=['int64'])
continuous_features = X.select_dtypes(include=['float64'])
categorical_features = X.select_dtypes(include=['object'])
import numpy as np
from sklearn.compose import ColumnTransformer
preprocessor = ColumnTransformer(
transformers=[
('ints', integer_transformer, integer_features),
('cont', continuous_transformer, continuous_features),
('cat', categorical_transformer, categorical_features)])
# Create a pipeline that combines the preprocessor created above with a classifier.
from sklearn.neighbors import KNeighborsClassifier
base = Pipeline(steps=[('preprocessor', preprocessor),
('classifier', KNeighborsClassifier())])
当然,我想利用 predict_proba()
,这最终给我带来了一些麻烦。我尝试了以下方法:
model = base.fit(X,y )
preds = model.predict_proba(X)
但是,我收到一个错误:
ValueError: No valid specification of the columns. Only a scalar, list or slice of all integers or all strings, or boolean mask is allowed
当然,这里是完整的回溯:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-37-a1a29a8b3623> in <module>()
----> 1 base_learner.fit(X)
D:\Anaconda3\lib\site-packages\sklearn\pipeline.py in fit(self, X, y, **fit_params)
263 This estimator
264 """
--> 265 Xt, fit_params = self._fit(X, y, **fit_params)
266 if self._final_estimator is not None:
267 self._final_estimator.fit(Xt, y, **fit_params)
D:\Anaconda3\lib\site-packages\sklearn\pipeline.py in _fit(self, X, y, **fit_params)
228 Xt, fitted_transformer = fit_transform_one_cached(
229 cloned_transformer, Xt, y, None,
--> 230 **fit_params_steps[name])
231 # Replace the transformer of the step with the fitted
232 # transformer. This is necessary when loading the transformer
D:\Anaconda3\lib\site-packages\sklearn\externals\joblib\memory.py in __call__(self, *args, **kwargs)
327
328 def __call__(self, *args, **kwargs):
--> 329 return self.func(*args, **kwargs)
330
331 def call_and_shelve(self, *args, **kwargs):
D:\Anaconda3\lib\site-packages\sklearn\pipeline.py in _fit_transform_one(transformer, X, y, weight, **fit_params)
612 def _fit_transform_one(transformer, X, y, weight, **fit_params):
613 if hasattr(transformer, 'fit_transform'):
--> 614 res = transformer.fit_transform(X, y, **fit_params)
615 else:
616 res = transformer.fit(X, y, **fit_params).transform(X)
D:\Anaconda3\lib\site-packages\sklearn\compose\_column_transformer.py in fit_transform(self, X, y)
445 self._validate_transformers()
446 self._validate_column_callables(X)
--> 447 self._validate_remainder(X)
448
449 result = self._fit_transform(X, y, _fit_transform_one)
D:\Anaconda3\lib\site-packages\sklearn\compose\_column_transformer.py in _validate_remainder(self, X)
299 cols = []
300 for columns in self._columns:
--> 301 cols.extend(_get_column_indices(X, columns))
302 remaining_idx = sorted(list(set(range(n_columns)) - set(cols))) or None
303
D:\Anaconda3\lib\site-packages\sklearn\compose\_column_transformer.py in _get_column_indices(X, key)
654 return list(np.arange(n_columns)[key])
655 else:
--> 656 raise ValueError("No valid specification of the columns. Only a "
657 "scalar, list or slice of all integers or all "
658 "strings, or boolean mask is allowed")
不确定我遗漏了什么,但会感谢任何可能的帮助。
编辑:我正在使用 sklearn 版本 0.20。
最佳答案
错误消息为您指明了正确的方向。列应按名称或索引指定,但您将数据列作为 DataFrame 传递。
df.select_dtypes()
不输出列索引。它输出具有匹配列的 DataFrame 的子集。你的代码应该是
# Use the ColumnTransformer to apply the transformations to the correct columns in the dataframe.
integer_features = list(X.columns[X.dtypes == 'int64'])
continuous_features = list(X.columns[X.dtypes == 'float64'])
categorical_features = list(X.columns[X.dtypes == 'object'])
因此,例如,整数列作为列表传递 ['curb-weight', 'engine-size', 'city-mpg', 'highway-mpg']
关于python - 如何让文本对象与 sklearn 分类器管道一起工作?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54987484/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!