- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我写了一个简单的 tf.keras.models.Sequential 模型。当我尝试用数据和标签作为 tf.Tensor 来拟合它时,它给了我一些错误。但是我可以用具有完全相同的底层数据的 numpy 数组来适应它。这是为什么?
我正在使用只有 CPU 的 tensorflow 1.13。我检查了 fit tf.keras.models.Sequential 的函数,但它说 tf.Tensor 和 numpy 数组都可以用作数据和标签,只要它们的类型匹配。
import tensorflow as tf
tf.enable_eager_execution()
# very simple keras Sequential model
model = tf.keras.Sequential([
tf.keras.layers.Dense(3, activation='relu'),
tf.keras.layers.Dense(3, activation='softmax')])
model.compile(optimizer=tf.train.AdamOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
# use tf.Tensor as data and label
data = tf.constant([[0,0,1],[0,1,0],[1,0,0]])
label = tf.constant([[0,0,1],[0,1,0],[1,0,0]])
# This throws the following error
# InvalidArgumentError: Index out of range using input dim 2; input has only 2 dims [Op:StridedSlice] name: strided_slice/
model.fit(data, label, epochs=10)
# use numpy array with the same underlying data and label
data = data.numpy()
label = label.numpy()
# This works
model.fit(data, label, epochs=10)
第一次拟合不起作用并抛出以下错误。但是第二个有效。这很有趣,因为它们具有完全相同的基础数据
最佳答案
好吧,看起来你可能正在使用 tensorflow 2.0,因为调用 .numpy()
我相信它在 1.13 上不存在(也许你已经意识到但你可以检查版本使用 tf.__version__
)
如果您打算使用 1.13,则需要进行 2 处更改以允许对 fit
的调用无错误地执行。
steps_per_epoch
参数例如,这段代码不会抛出任何错误:
model = tf.keras.Sequential([
tf.keras.layers.Dense(3, activation='relu'),
tf.keras.layers.Dense(3, activation='softmax')])
model.compile(optimizer=tf.train.AdamOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
data = tf.constant([[0,0,1],[0,1,0],[1,0,0]], dtype=tf.float32)
label = tf.constant([[0,0,1],[0,1,0],[1,0,0]], dtype=tf.float32)
model.fit(data, label, epochs=10, steps_per_epoch=2)
关于python - tf.keras.models.Sequential 模型无法适应输入类型 tf.Tensor,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56088294/
我试图将迁移学习应用于 InceptionV3。这是我的代码: inception_model = InceptionV3(weights='imagenet',include_top=False)
我正在尝试展示 GAN 网络在某些指定时期的结果。打印当前结果的功能以前与 TF 一起使用。我需要换成 pytorch。 def show_result(G_net, z_, num_epoch, s
我对孪生神经网络还很陌生,最近发现了 this example和 Colab notebook . 运行代码时出现以下错误: IndexError: invalid index of a 0-dim
我正在尝试使用在此 PR 中添加的“高级”、numpy 样式的切片,但是我遇到了 same issue as the user here : ValueError: Shape must be ran
我想在 TensorFlow 中做类似这段 Numpy 代码的事情: a = np.zeros([5, 2]) idx = np.random.randint(0, 2, (5,)) row_idx
我有以下特征张量: Eigen::Tensor m(3,10,10); 我想访问第一个矩阵。在 numpy 中我会这样做 m(0,:,:) 我如何在 Eigen 中做到这一点 最佳答案 您可以使用 .
1、问题 模型训练完后进行测试,报错 RuntimeError: Tensor for 'out' is on CPU, Tensor for argument #1 'self' is on CPU
我正在对 TFRecords 进行配对,它为我提供了一个标签作为数值。但是我需要在读取原始记录时将此值转换为分类向量。我怎样才能做到这一点。这是读取原型(prototype)记录的代码片段: def
我正在对 TFRecords 进行配对,它为我提供了一个标签作为数值。但是我需要在读取原始记录时将此值转换为分类向量。我怎样才能做到这一点。这是读取原型(prototype)记录的代码片段: def
我应该如何从 Eigen::Tensor 创建一个 tensorflow::Tensor?我可以一个接一个地复制元素,但我希望有更好的方法。 最佳答案 没有公共(public) api 可以在不复制数
我正在尝试使用 Tensorflow(版本 0.9.0)以与 beginner's tutorial 非常相似的方式训练一个简单的二元逻辑回归分类器。并且在拟合模型时遇到以下错误: ValueErro
从 0.4.0 版本开始,可以使用 torch.tensor 和 torch.Tensor 有什么区别?提供这两个非常相似且令人困惑的替代方案的原因是什么? 最佳答案 在 PyTorch 中,torc
PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad
我有一个参差不齐的张量,在尝试创建模型并使用 model.fit() 时,出现错误:TypeError: Failed to convert object of type to Tensor. Co
我必须用生成器和判别器训练一个 GAN 网络。我的发电机网络如下。 def Generator(image_shape=(512,512,3): inputs = Input(image_shap
我正在使用 Flask 运行 Web 服务器,当我尝试使用 vgg16 时出现错误,vgg16 是 keras 的预训练 VGG16 模型的全局变量。我不知道为什么会出现这个错误,也不知道它是否与 T
我正在使用 keras 的预训练模型,并且在调用 ResNet50(weights='imagenet') 时出现错误。 我在 flask 服务器中有以下代码: def getVGG16Predict
执行以下代码时出现以下错误。 rnn.rnn() 返回张量列表。错误在 convert_to_tensor 行。 TypeError: List of Tensors when single Tens
我有一个fruit_train_net.py 文件,其中包含以下代码 import tensorflow as tf import numpy as np import time import os
我们可以使用 torch.Tensor([1., 2.], device='cuda') 在 GPU 上分配张量.使用这种方式而不是torch.cuda.Tensor([1., 2.])有什么不同吗?
我是一名优秀的程序员,十分优秀!