- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 scipy.integrate.odeint
求解一组耦合微分方程。但是,当我尝试运行该程序时,出现以下错误:
TypeError:无法根据规则“安全”odepack 将数组数据从 dtype('O') 转换为 dtype('float64')。错误:函数调用的结果不是正确的 float 组。
这是我使用的代码:
V = "v**2/2*log(1+x**2 + (y/a)**2 + (z/c)**2)"
var = ['x','y','z']
def afleiden(func, var):
f = sympify(func)
partAfg = [f.diff(var[i]) for i in range(len(var))]
return partAfg
init=[0.3,0.2,0.9,0.2,0.6,0.7]
def func(rv, t, pot, var):
return rv[3:6] + afleiden(pot,var)
# rv is a list with 6 elements of witch the last 3 are part of the diff equations
t = np.arange(0,10,0.01)
y = odeint(func, init, t, args=(V, var,))
可能是因为 afleiden
中的方程是使用 Sympy 计算的,因此可能是 sypmpy
表达式?如果是这样,我能做些什么吗?我尝试使用 lambdify,但没有成功。
最佳答案
正如@Warren Weckesser 所说和您所怀疑的,您需要先对表达式进行 lambdify,以便各种偏导数 dV/dvar[j]
返回一个浮点值。
更一般地说,afleiden
函数的一个问题是它计算 V
的解析导数,而不计算这些表达式的值。我假设 v,a,c
是您问题的参数,描述了一个潜在的函数 V(x,y,z)
。我还假设你的 o.d.e.是
dX/dt = dV/dX(x,y,z)
,
其中 X=[x,y,z]
是您的变量列表。
如果是这种情况,那么您有 3 个差异。方程式,而不是 func()
中的 6
(列表的总和是列表的串联,而不是总和的列表)。
import numpy as np
from sympy import lambdify, sympify
from scipy.integrate import odeint
var = ['x', 'y', 'z']
V = sympify("v**2/2*log(1+x**2 + (y/a)**2 + (z/c)**2)")
dVdvar_analytical = [V.diff(var[i]) for i in range(len(var))]
dVdvar = [lambdify(('x', 'y', 'z', 'v', 'a', 'c'), df) for df in dVdvar_analytical]
def afleiden(variables, _, params, dVdvar):
x, y, z = variables
v, a, c = params
return [dVdvarj(x, y, z, v, a, c) for dVdvarj in dVdvar ]
variables0, params = [0.3, 0.2, 0.9], [0.2, 0.6, 0.7]
t = np.arange(0, 10, .1)
y = odeint(afleiden, variables0, t, args=(params, dVdvar))
plot(t, y)
与您对潜在 V
的表达一致,原点是一个排斥体,点 y(t)
在模拟中长时间趋于无穷大。如果在表达式的开头添加减号,则原点变为吸引子,解收敛于 0
:
#example with minus sign
V = sympify("-v**2/2*log(1+x**2 + (y/a)**2 + (z/c)**2)")
t = np.arange(0, 100, .1)
关于python - 使用 scipy.integrate.odeint 时出现类型错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23396159/
我在使用 cx_freeze 和 scipy 时无法编译 exe。特别是,我的脚本使用 from scipy.interpolate import griddata 构建过程似乎成功完成,但是当我尝试
是否可以通过函数在 scipy 中定义一个稀疏矩阵,而不是列出所有可能的值?在文档中,我看到可以通过以下方式创建稀疏矩阵 There are seven available sparse matrix
SciPy为非线性最小二乘问题提供了两种功能: optimize.leastsq()仅使用Levenberg-Marquardt算法。 optimize.least_squares()允许我们选择Le
SciPy 中的求解器能否处理复数值(即 x=x'+i*x")?我对使用 Nelder-Mead 类型的最小化函数特别感兴趣。我通常是 Matlab 用户,我知道 Matlab 没有复杂的求解器。如果
我有看起来像这样的数据集: position number_of_tag_at_this_position 3 4 8 6 13 25 23 12 我想对这个数据集应用三次样条插值来插值标签密度;为此
所以,我正在处理维基百科转储,以计算大约 5,700,000 个页面的页面排名。这些文件经过预处理,因此不是 XML 格式。 它们取自 http://haselgrove.id.au/wikipedi
Scipy 和 Numpy 返回归一化的特征向量。我正在尝试将这些向量用于物理应用程序,我需要它们不被标准化。 例如a = np.matrix('-3, 2; -1, 0') W,V = spl.ei
基于此处提供的解释 1 ,我正在尝试使用相同的想法来加速以下积分: import scipy.integrate as si from scipy.optimize import root, fsol
这很容易重新创建。 如果我的脚本 foo.py 是: import scipy 然后运行: python pyinstaller.py --onefile foo.py 当我启动 foo.exe 时,
我想在我的代码中使用 scipy.spatial.distance.cosine。如果我执行类似 import scipy.spatial 或 from scipy import spatial 的操
Numpy 有一个基本的 pxd,声明它的 c 接口(interface)到 cython。是否有用于 scipy 组件(尤其是 scipy.integrate.quadpack)的 pxd? 或者,
有人可以帮我处理 scipy.stats.chisquare 吗?我没有统计/数学背景,我正在使用来自 https://en.wikipedia.org/wiki/Chi-squared_test 的
我正在使用 scipy.odr 拟合数据与权重,但我不知道如何获得拟合优度或 R 平方的度量。有没有人对如何使用函数存储的输出获得此度量有建议? 最佳答案 res_var Output 的属性是所谓的
我刚刚下载了新的 python 3.8,我正在尝试使用以下方法安装 scipy 包: pip3.8 install scipy 但是构建失败并出现以下错误: **Failed to build sci
我有 my own triangulation algorithm它基于 Delaunay 条件和梯度创建三角剖分,使三角形与梯度对齐。 这是一个示例输出: 以上描述与问题无关,但对于上下文是必要的。
这是一个非常基本的问题,但我似乎找不到好的答案。 scipy 到底计算什么内容 scipy.stats.norm(50,10).pdf(45) 据我了解,平均值为 50、标准差为 10 的高斯中像 4
我正在使用 curve_fit 来拟合一阶动态系统的阶跃响应,以估计增益和时间常数。我使用两种方法。第一种方法是在时域中拟合从函数生成的曲线。 # define the first order dyn
让我们假设 x ~ Poisson(2.5);我想计算类似 E(x | x > 2) 的东西。 我认为这可以通过 .dist.expect 运算符来完成,即: D = stats.poisson(2.
我正在通过 OpenMDAO 使用 SLSQP 来解决优化问题。优化工作充分;最后的 SLSQP 输出如下: Optimization terminated successfully. (Exi
log( VA ) = gamma - (1/eta)log[alpha L ^(-eta) + 测试版 K ^(-eta)] 我试图用非线性最小二乘法估计上述函数。我为此使用了 3 个不同的包(Sc
我是一名优秀的程序员,十分优秀!