gpt4 book ai didi

python - 尝试合并具有多种条件的 DataFrame

转载 作者:行者123 更新时间:2023-11-28 17:23:06 24 4
gpt4 key购买 nike

这是一个奇怪的数据框:我有 3 个数据框,“prov_data”包含一个提供者 ID 并根据区域和类别计数(即提供者与这些区域和类别交互的次数)。

prov_data = DataFrame({'aprov_id':[1122,3344,5566,7788],'prov_region_1':[0,0,4,0],'prov_region_2':[2,0,0,0],
'prov_region_3':[0,1,0,1],'prov_cat_1':[0,2,0,0],'prov_cat_2':[1,0,3,0],'prov_cat_3':[0,0,0,4],
'prov_cat_4':[0,3,0,0]})

enter image description here

“tender_data”包含相同但用于投标。

tender_data = DataFrame({'atender_id':['AA12','BB33','CC45'],
'ten_region_1':[0,0,1,],'ten_region_2':[0,1,0],
'ten_region_3':[1,1,0],'ten_cat_1':[1,0,0],
'ten_cat_2':[0,1,0],'ten_cat_3':[0,1,0],
'ten_cat_4':[0,0,1]})

enter image description here

最后是一个“no_match”DF,其中包含供应商和招标之间的禁止匹配。

no_match = DataFrame({ 'prov_id':[1122,3344,5566], 
'tender_id':['AA12','BB33','CC45']})

enter image description here

我需要执行以下操作:创建一个新的 df,如果它们 (1) 匹配一个或多个类别(即同一类别 > 0)并且 (2) 匹配一个,则将附加 prov_data 和 tender_data DataFrame 的行或更多地区 AND (3) 不在 no_match 列表中。

所以这会给我这个 DF:

df = DataFrame({'aprov_id':[1122,3344,7788],'prov_region_1':[0,0,0],'prov_region_2':[2,0,0],
'prov_region_3':[0,1,1],'prov_cat_1':[0,2,0],'prov_cat_2':[1,0,0],'prov_cat_3':[0,0,4],
'prov_cat_4':[0,3,0], 'atender_id':['BB33','AA12','BB33'],
'ten_region_1':[0,0,0],'ten_region_2':[1,0,1],
'ten_region_3':[1,1,1],'ten_cat_1':[0,1,0],
'ten_cat_2':[1,0,1],'ten_cat_3':[1,0,1],
'ten_cat_4':[0,0,0]})

最佳答案

代码

# the first columns of each dataframe are the ids
# i'm going to use them several times
tid = tender_data.values[:, 0]
pid = prov_data.values[:, 0]
# first columns [1, 2, 3, 4] are cat columns
# we could have used filter, but this is good
# for this example
pc = prov_data.values[:, 1:5]
tc = tender_data.values[:, 1:5]
# columns [5, 6, 7] are rgn columns
pr = prov_data.values[:, 5:]
tr = tender_data.values[:, 5:]

# I want to mave this an m x n array, where
# m = number of rows in prov df and n = rows in tender
nm = no_match.groupby(['prov_id', 'tender_id']).size().unstack()
nm = nm.reindex_axis(tid, 1).reindex_axis(pid, 0)
nm = ~nm.fillna(0).astype(bool).values * 1

# the dot products of the cat arrays gets a handy
# array where there are > 1 co-positive values
# this combined with the a no_match construct
a = pd.DataFrame(pc.dot(tc.T) * pr.dot(tr.T) * nm > 0, pid, tid)
a = a.mask(~a).stack().index

fp = a.get_level_values(0)
ft = a.get_level_values(1)

pd.concat([
prov_data.set_index('aprov_id').loc[fp].reset_index(),
tender_data.set_index('atender_id').loc[ft].reset_index()
], axis=1)


index prov_cat_1 prov_cat_2 prov_cat_3 prov_cat_4 prov_region_1 \
0 1122 0 1 0 0 0
1 3344 2 0 0 3 0
2 7788 0 0 4 0 0

prov_region_2 prov_region_3 atender_id ten_cat_1 ten_cat_2 ten_cat_3 \
0 2 0 BB33 0 1 1
1 0 1 AA12 1 0 0
2 0 1 BB33 0 1 1

ten_cat_4 ten_region_1 ten_region_2 ten_region_3
0 0 0 1 1
1 0 0 0 1
2 0 0 1 1

解释

  • 使用点积来确定匹配项
  • 许多其他事情我稍后会尝试解释更多

关于python - 尝试合并具有多种条件的 DataFrame,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40519308/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com