- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这是一个非常具体的问题,我希望社区可以帮助我解决。提前致谢。
所以我有两组数据,一组是实验数据,另一组基于方程式。我试图将我的数据点拟合到这条曲线上,从而获得我感兴趣的缺失变量。即 Ebfit 函数中的 a 和 b。
代码如下:
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as spys
from scipy.optimize import curve_fit
time = [60,220,520,1840]
Moment = [0.64227262,0.468318916,0.197100772,0.104512508]
Temperature = 25 # Bake temperature in degrees C
Nb = len(Moment) # Number of bake measurements
Baketime_a = time #[s]
N_Device = 10000 # No. of devices considered in the array
T_ambient = 273 + Temperature
kt = 0.0256*(T_ambient/298) # In units of eV
f0 = 1e9 # Attempt frequency
def Ebfit(x,a,b):
Eb_mean = a*(0.0256/kt) # Eb at bake temperature
Eb_sigma = b*Eb_mean
Foursigma = 4*Eb_sigma
Eb_a = np.linspace(Eb_mean-Foursigma,Eb_mean+Foursigma,N_Device)
dEb = Eb_a[1] - Eb_a[0]
pdfEb_a = spys.norm.pdf(Eb_a,Eb_mean,Eb_sigma)
## Retention Time
DMom = np.zeros(len(x),float)
tau = (1/f0)*np.exp(Eb_a)
for bb in range(len(x)):
DMom[bb]= (1 - 2*(sum(pdfEb_a*(1 - np.exp(np.divide(-x[bb],tau))))*dEb))
return DMom
a = 30
b = 0.10
params,extras = curve_fit(Ebfit,time,Moment)
x_new = list(range(0,2000,1))
y_new = Ebfit(x_new,params[0],params[1])
plt.plot(time,Moment, 'o', label = 'data points')
plt.plot(x_new,y_new, label = 'fitted curve')
plt.legend()
我遇到的主要问题是,当我使用大量点时,数据与函数的拟合不起作用。在上面的代码中,当我使用 4 个点(时间和时刻)时,这段代码工作正常。
我得到以下 a 和 b 的值。
数组([ 29.11832766, 0.13918353])
a 的预期值为 (23-50),b 为 (0.06 - 0.15)。所以这些值都在可接受的范围内。这是相应的情节:
但是,当我使用我的实际实验归一化数据时,大约有 500 个点。
编辑:此数据:
标准化数据
https://www.dropbox.com/s/64zke4wckxc1r75/Normalized%20Data.csv?dl=0
原始数据
https://www.dropbox.com/s/ojgse5ibp59r8nw/Data1.csv?dl=0
我得到以下值并绘制了 a 和 b 超出可接受范围的值,
数组([-13.76687781, -12.90494196])
我知道这些值是错误的,如果我手动执行(慢慢调整值以获得合适的值),它将在 a=30.1 和 b=0.09 左右em>。当绘制时看起来像这样:
我已经尝试更改 a 和 b 的初始猜测值、其他实验数据集以及类似线程中的其他建议。似乎没有一个适合我。感谢您提供的任何帮助。谢谢。
....
附加信息
其中 Dmom = 1 - 2*Psw
a 是 Eb 值,而 b 是 Sigma 值,其中,Eb 的取值范围由概率密度函数和 4 倍的 sigma 值决定(即四西格玛)。然后对该分布求和以用于最终方程。
最佳答案
看来您确实需要对 a
和 b
进行初步猜测。也许您正在拟合的功能表现不佳,这就是为什么它很容易因远离全局最小值的初始猜测而失败。话虽这么说,但这是一个如何拟合数据的工作示例:
import pandas as pd
data_df = pd.read_csv('data.csv')
time = data_df['Time since start, Time [s]'].values
moment = data_df['Signal X direction, Moment [emu]'].values
params, extras = curve_fit(Ebfit, time, moment, p0=[40, 0.3])
产生 a
和 b
的值:
In [6]: params
Out[6]: array([ 30.47553689, 0.08839412])
这导致函数的对齐很好。
x_big = np.linspace(1, 1800, 2000)
y_big = Ebfit(x_big, params[0], params[1])
plt.plot(time, moment, 'o', alpha=0.5, label='all points')
plt.plot(x_big, y_big, label = 'fitted curve')
plt.legend()
plt.show()
关于python - 大量数据点的曲线拟合,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40760556/
我正在尝试创建 treasury yield curve 的图表比较两个不同日期的汇率。我很难将两条曲线组合起来并创建一个干净的图形。 我的问题:如何将两条 yield 曲线绘制在一起, yield
我在 R 平台中使用 randomForest 包进行分类任务。 rf_object<-randomForest(data_matrix, label_factor, cutoff=c(k,1-k))
我的设计师给我设计了这个设计,但我不知道如何最好地处理图像上方和下方的曲线。 我考虑过 clip-path 但不知道如何 flex 它。如果可以的话,我不想使用图像。 最佳答案 您可以使用 borde
我正在使用 Canvas 中的笔触和路径来制作两条线,我希望它们像波浪效果一样弯曲。而不是在 Photoshop 中创建实际图像来实现此目的。 谁能帮忙得到如下图所示的曲线? 我还想在末端实现圆 An
我正在尝试开发一种可以处理图像骨架的路径/曲线的代码。我想要一个来自两点之间骨架的点 vector 。 这段代码加了点就结束了,没找到解决办法。 #include "opencv2/highgui/
现在需要帮助。我可以用MKPolyline和MKPolylineView画线,但是如何在MKMapView上的两个坐标之间画弧线或曲线呢?非常感谢。 最佳答案 在回答问题之前,重要的是要提到 MKOv
我正在尝试应用 sklearn 的想法 ROC extension to multiclass到我的数据集。我的每类 ROC 曲线看起来都找到了一条直线,取消显示曲线波动的 sklearn 示例。 我
我有以下概念问题,我无法理解。 以下是调查数据示例,其中我有一个时间列,指示某人需要多长时间才能回答某个问题。 现在,我感兴趣的是清洁量将如何根据此阈值发生变化,即如果我增加阈值会发生什么,如果我降低
如何为使用视频的对象检测应用绘制每个窗口的误报率与未命中率(或误报概率)和 ROC(接收器操作曲线)的图表?如何确定误报和命中的数量?一个例子是很有用。 最佳答案 它很简单。将所有真正 (H0) 值存
我正在尝试绘制随机森林分类的 ROC 曲线。绘图有效,但我认为我绘制了错误的数据,因为生成的绘图只有一个点(准确性)。 这是我使用的代码: set.seed(55) data.controls <
我有如下两个模型: library(mlbench) data(Sonar) library(caret) set.seed(998) my_data <- Sonar fitControl <-
是否可以仅通过查看其 ROC 曲线来了解分类器是否过度拟合?我看到如果它的 AUC 太高(例如 98%)可能会过度拟合,但这也可能意味着分类器非常好。有没有办法区分这两种情况? 最佳答案 简短的回答:
我正在 JavaFX 中创建一个图形,它应该由有向边连接。最好是双三次曲线。有谁知道如何添加箭头? 箭头当然应该根据曲线的末端进行旋转。 这是一个没有箭头的简单示例: import javafx.ap
我需要对我正在尝试的技术进行一些说明。我正在尝试将一个实体从 A 点移动到 B 点,但我不希望该实体沿直线移动。 例如,如果实体位于 x: 0, y:0 并且我想到达点 x:50, y: 0,我希望实
我试图在曲线下方绘制阴影区域,但阴影区域位于曲线上方。谁能告诉我我的代码有什么问题? x=seq(0,30) y1=exp(-0.1*x) plot(x,y1,type="l",lwd=2,col="
我需要对我正在尝试的技术进行一些说明。我正在尝试将一个实体从 A 点移动到 B 点,但我不希望该实体沿直线移动。 例如,如果实体位于 x: 0, y:0 并且我想到达点 x:50, y: 0,我希望实
我有一个如下所示的模型: library(mlbench) data(Sonar) library(caret) set.seed(998) my_data <- Sonar fitControl <
有没有办法从pyspark中的Spark ML获取ROC曲线上的点?在文档中,我看到了一个 Scala 的例子,但不是 python:https://spark.apache.org/docs/2.1
我正在尝试使用Local Outlier Factor (LOF)算法,并想绘制 ROC 曲线。问题是,scikit-learn 提供的库不会为每个预测生成分数。 那么,有什么办法可以解决这个问题吗?
我目前正在使用 GDI+ 绘制折线图,并使用 Graphics.DrawCurve 来平滑线条。问题是曲线并不总是与我输入的点匹配,这使得曲线在某些点上超出了图形框架,如下所示(红色是 Graph
我是一名优秀的程序员,十分优秀!