gpt4 book ai didi

python - 2 个时间相关的多维信号(信号向量)的相关性

转载 作者:行者123 更新时间:2023-11-28 17:20:53 24 4
gpt4 key购买 nike

我有一个矩阵 M1 ,其中每一行都是一个随时间变化的信号。

我还有另一个相同维度的矩阵 M2,其中每一行也是一个时间相关信号,用作"template"以识别第一个矩阵中的信号形状。

结果我想要一个列向量 v,其中 v [i] 是 M1 的第 i 行和 M2 的第 i 行之间的相关性。

我研究了 numpy 的 corrcoef 函数并尝试了以下代码:

import numpy as np

M1 = np.array ([
[1, 2, 3, 4],
[2, 3, 1, 4]
])

M2 = np.array ([
[10, 20, 30, 40],
[20, 30, 10, 40]
])

print (np.corrcoef (M1, M2))

打印:

[[ 1.   0.4  1.   0.4]
[ 0.4 1. 0.4 1. ]
[ 1. 0.4 1. 0.4]
[ 0.4 1. 0.4 1. ]]

我一直在阅读文档,但对于必须选择此矩阵的哪些条目作为向量 v 的条目,我仍然感到困惑。

有人能帮忙吗?

(我已经研究了几个类似问题的 S.O. 答案,但还没有看到曙光......)

代码上下文:

有 256 行(信号),我在“主信号”上运行了一个包含 200 个样本的滑动窗口,它的长度为 10k 个样本。所以 M1 和 M2 都是 256 行 x 200 列。对于错误的 10k 样本,我们深表歉意。那是总信号长度。通过使用与滑动模板的相关性,我尝试找到模板最匹配的偏移量。实际上,我正在 256 channel 侵入性心电图中寻找 QRS 复合波(或者更确切地说,医生称之为电图)。

    lg.info ('Processor: {}, time: {}, markers: {}'.format (self.key, dt.datetime.now ().time (), len (self.data.markers)))

# Compute average signal shape over preexisting markers and uses that as a template to find the others.
# All generated markers will have the width of the widest preexisting one.

template = np.zeros ((self.data.samples.shape [0], self.bufferWidthSteps))

# Add intervals that were marked in advance
nrOfTerms = 0
maxWidthSteps = 0
newMarkers = []
for marker in self.data.markers:
if marker.key == self.markerKey:

# Find start and stop sample index
startIndex = marker.tSteps - marker.stampWidthSteps // 2
stopIndex = marker.tSteps + marker.stampWidthSteps // 2

# Extract relevant slice from samples and add it to template
template += np.hstack ((self.data.samples [ : , startIndex : stopIndex], np.zeros ((self.data.samples.shape [0], self.bufferWidthSteps - marker.stampWidthSteps))))

# Adapt nr of added terms to facilitate averaging
nrOfTerms += 1

# Remember maximum width of previously marked QRS complexes
maxWidthSteps = max (maxWidthSteps, marker.stampWidthSteps)
else:
# Preexisting markers with non-matching keys are just copied to the new marker list
# Preexisting markers with a matching key are omitted from the new marker list
newMarkers.append (marker)

# Compute average of intervals that were marked in advance
template = template [ : , 0 : maxWidthSteps] / nrOfTerms
halfWidthSteps = maxWidthSteps // 2

# Append markers of intervals that yield an above threshold correlation with the averaged marked intervals
firstIndex = 0
stopIndex = self.data.samples.shape [1] - maxWidthSteps
while firstIndex < stopIndex:
corr = np.corrcoef (
template,
self.data.samples [ : , firstIndex : firstIndex + maxWidthSteps]
)

diag = np.diagonal (
corr,
template.shape [0]
)

meanCorr = np.mean (diag)

if meanCorr > self.correlationThreshold:
newMarkers.append ([self.markerFactories [self.markerKey] .make (firstIndex + halfWidthSteps, maxWidthSteps)])

# Prevent overlapping markers
firstIndex += maxWidthSteps
else:
firstIndex += 5

self.data.markers = newMarkers

lg.info ('Processor: {}, time: {}, markers: {}'.format (self.key, dt.datetime.now ().time (), len (self.data.markers)))

最佳答案

基于 this solution为了找到两个 2D 数组之间的相关矩阵,我们可以使用类似的方法来找到相关向量,计算两个数组中相应行之间的相关性。实现看起来像这样 -

def corr2_coeff_rowwise(A,B):
# Rowwise mean of input arrays & subtract from input arrays themeselves
A_mA = A - A.mean(1)[:,None]
B_mB = B - B.mean(1)[:,None]

# Sum of squares across rows
ssA = (A_mA**2).sum(1);
ssB = (B_mB**2).sum(1);

# Finally get corr coeff
return np.einsum('ij,ij->i',A_mA,B_mB)/np.sqrt(ssA*ssB)

我们还可以通过在其中引入einsum 魔法来进一步优化该部分以获得ssAssB!

def corr2_coeff_rowwise2(A,B):
A_mA = A - A.mean(1)[:,None]
B_mB = B - B.mean(1)[:,None]
ssA = np.einsum('ij,ij->i',A_mA,A_mA)
ssB = np.einsum('ij,ij->i',B_mB,B_mB)
return np.einsum('ij,ij->i',A_mA,B_mB)/np.sqrt(ssA*ssB)

sample 运行-

In [164]: M1 = np.array ([
...: [1, 2, 3, 4],
...: [2, 3, 1, 4.5]
...: ])
...:
...: M2 = np.array ([
...: [10, 20, 33, 40],
...: [20, 35, 15, 40]
...: ])
...:

In [165]: corr2_coeff_rowwise(M1, M2)
Out[165]: array([ 0.99411402, 0.96131896])

In [166]: corr2_coeff_rowwise2(M1, M2)
Out[166]: array([ 0.99411402, 0.96131896])

运行时测试-

In [97]: M1 = np.random.rand(256,200)
...: M2 = np.random.rand(256,200)
...:

In [98]: out1 = np.diagonal (np.corrcoef (M1, M2), M1.shape [0])
...: out2 = corr2_coeff_rowwise(M1, M2)
...: out3 = corr2_coeff_rowwise2(M1, M2)
...:

In [99]: np.allclose(out1, out2)
Out[99]: True

In [100]: np.allclose(out1, out3)
Out[100]: True

In [101]: %timeit np.diagonal (np.corrcoef (M1, M2), M1.shape [0])
...: %timeit corr2_coeff_rowwise(M1, M2)
...: %timeit corr2_coeff_rowwise2(M1, M2)
...:
100 loops, best of 3: 9.5 ms per loop
1000 loops, best of 3: 554 µs per loop
1000 loops, best of 3: 430 µs per loop

20x+ 使用 einsum 比内置 np.corrcoef 提速!

关于python - 2 个时间相关的多维信号(信号向量)的相关性,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41700840/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com