- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 Nativescript 核心和带有 nativescript-camera 插件的 firebase ML 套件进行在线版本的文本识别(我不知道是否有更好的插件)
目前我对这个事件有一个想法:
exports.onCapture = function () {
if (camera.isAvailable()) {
var options = { width: 300, height: 300, keepAspectRatio: false, saveToGallery: false};
camera.takePicture(options)
.then(function (imageAsset) {
getTextFromPhotoCloud("HOW TO CONVERT imageAsset TO IMAGESOURCE");
}).catch(function (err) {
console.log("Error -> " + err.message);
});
}
}
以及 ml Kit 的代码:
function getTextFromPhotoCloud(imageSource) {
var firebase = require("nativescript-plugin-firebase");
firebase.mlkit.textrecognition.recognizeTextCloud({
image: imageSource
}).then(function (result) {
console.log(result.text ? result.text : "");
}).catch(function (errorMessage) {
return console.log("ML Kit error: " + errorMessage);
});
}
如何将相机响应转换为图像源格式(用于 ML 套件)而不将其保存在图库中?
有没有更好的相机插件或其他东西?实际上,我必须启动相机应用程序、拍照并接受预览才能启动 ML 套件。应用程序中是否可以有更集成的东西(不需要为每张照片执行 3 个操作)可以连接到 ML 套件的在线模式?像这样的代码,坚果使用云方法而不是实时的:
<MLKitTextRecognition
class="my-class"
width="260"
height="380"
processEveryNthFrame="10"
preferFrontCamera="false"
[pause]="pause"
[torchOn]="torchOn"
(scanResult)="onTextRecognitionResult($event)">
</MLKitTextRecognition>
最佳答案
在图像源中使用fromAsset
方法。
import { fromAsset } from "tns-core-modules/image-source"
fromAsset(imageAsset).
then((imageSource) => {
.....
});
关于javascript - Nativescript 核心将 imageAsset 转换为 Imagesource ML 套件和相机接口(interface),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53535495/
如何将运算符传递给 ML 中的函数?例如,考虑这个伪代码: function (int a, int b, operator op) return a op b 这里,运算符可以是 op +
我尝试在 Google Cloud ML 上运行来自 github 的 word-RNN 模型。提交作业后,我在日志文件中收到错误。 这是我提交的训练内容 gcloud ml-engine jobs
在 a.ml 中定义了一个记录类型 t 并且也是透明地定义的 在 a.mli 中,即在 d 接口(interface)中,以便类型定义可用 到所有其他文件。 a.ml 还有一个函数 func,它返回一
关闭 ML.NET 模型生成器后,是否可以为创建的模型重新打开它? 我可以删除创建的模型并重新开始,但这并不理想。 最佳答案 不,不是真的。 AutoML/Model Builder 可以生成代码并将
我有一个关于训练可以预测名称是否为女性的 ML.NET 的问题。该模型可以使用这样的管道进行训练: var mlContext = new MLContext(); IDataView trainin
我在 ASP.NET Core 应用程序中使用 ML.NET,并在 Startup 中使用以下代码: var builder = services.AddPredictionEnginePool();
我使用 sklearn 创建了一个模型进行分类。当我调用函数 y_pred2 = clf.predict (features2) 时,它会返回一个包含我的预测的所有 id 的列表 y_pred2 =
我已向 cloud ml 提交了训练作业。但是,它找不到 csv 文件。它就在桶里。这是代码。 # Use scikit-learn to grid search the batch size and
我是 Azure Databricks 的新手,尽管我在 Databricks 方面有很好的经验,但仅限于 Data Engg 方面。我对 Databricks Runtime ML 和 ML Flo
为什么我尝试将经过训练的模型部署到 Google Cloud ML,却收到以下错误: Create Version failed.Model validation failed: Model meta
我是 Azure Databricks 的新手,尽管我在 Databricks 方面有很好的经验,但仅限于 Data Engg 方面。我对 Databricks Runtime ML 和 ML Flo
我是 Azure ML 新手。我有一些疑问。有人可以澄清下面列出的我的疑问吗? Azure ML 服务与 Azure ML 实验服务之间有什么区别。 Azure ML 工作台和 Azure ML St
我的 Cloud ML 训练作业已完成,输出如下: "consumedMLUnits": 43.24 我如何使用此信息来确定培训工作的成本?我无法在以下两个选项之间做出决定: 1)根据这个page ,
docs for setting up Google Cloud ML建议安装 Tensorflow 版本 r0.11。我观察到 r0.12 中新提供的 TensorFlow 函数在 Cloud ML
我正在关注一个来自 - https://spark.apache.org/docs/2.3.0/ml-classification-regression.html#multinomial-logist
我想使用 mosmlc 将我的 ML 程序编译成可执行二进制文件。但是,我找不到太多关于如何操作的信息。 我想编译的代码在这里http://people.pwf.cam.ac.uk/bt288/tic
假设我有两个 Azure ML 工作区: Workspace1 - 由一个团队(Team1)使用,该团队仅训练模型并将模型存储在 Workspace1 的模型注册表中 Workspace2 - 由另一
我尝试使用以下命令行在 Azure 上的 Linux(Ubuntu) 数据科学虚拟机上设置我的 Azure 机器学习环境: az ml 环境设置 但是,它显示错误为加载命令模块 ml 时出错。一直在谷
假设我有两个 Azure ML 工作区: Workspace1 - 由一个团队(Team1)使用,该团队仅训练模型并将模型存储在 Workspace1 的模型注册表中 Workspace2 - 由另一
我尝试使用以下命令行在 Azure 上的 Linux(Ubuntu) 数据科学虚拟机上设置我的 Azure 机器学习环境: az ml 环境设置 但是,它显示错误为加载命令模块 ml 时出错。一直在谷
我是一名优秀的程序员,十分优秀!