- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在查看此笔记本中的策略梯度示例:https://github.com/ageron/handson-ml/blob/master/16_reinforcement_learning.ipynb
相关代码在这里:
X = tf.placeholder(tf.float32, shape=[None, n_inputs])
hidden = tf.layers.dense(X, n_hidden, activation=tf.nn.elu, kernel_initializer=initializer)
logits = tf.layers.dense(hidden, n_outputs)
outputs = tf.nn.sigmoid(logits) # probability of action 0 (left)
p_left_and_right = tf.concat(axis=1, values=[outputs, 1 - outputs])
action = tf.multinomial(tf.log(p_left_and_right), num_samples=1)
y = 1. - tf.to_float(action)
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=logits)
optimizer = tf.train.AdamOptimizer(learning_rate)
grads_and_vars = optimizer.compute_gradients(cross_entropy)
gradients = [grad for grad, variable in grads_and_vars]
gradient_placeholders = []
grads_and_vars_feed = []
for grad, variable in grads_and_vars:
gradient_placeholder = tf.placeholder(tf.float32, shape=grad.get_shape())
gradient_placeholders.append(gradient_placeholder)
grads_and_vars_feed.append((gradient_placeholder, variable))
training_op = optimizer.apply_gradients(grads_and_vars_feed)
...
# Run training over a bunch of instances of inputs
for step in range(n_max_steps):
action_val, gradients_val = sess.run([action, gradients], feed_dict={X: obs.reshape(1, n_inputs)})
...
# Then weight each gradient by the action values, average, and feed them back into training_op to apply_gradients()
以上工作正常,因为每个 run() 返回不同的梯度。
我想对所有这些进行批处理,并将一组输入输入 run() 而不是一次输入一个输入(我的环境与示例中的环境不同,因此对我来说进行批处理是有意义的,并提高性能)。即:
action_val, gradients_val = sess.run([action, gradients], feed_dict={X: obs_array})
其中 obs_array 的形状为 [n_instances, n_inputs]
。
问题是 optimizer.compute_gradients(cross_entropy) 似乎返回单个梯度,即使 cross_entropy 是形状为 [None, 1] 的一维张量。 action_val 确实如预期的那样返回一维 Action 张量 - 批处理中每个实例一个 Action 。
有什么方法可以让我获得一组渐变,批处理中每个实例一个?
最佳答案
The problem is that
optimizer.compute_gradients(cross_entropy)
seems to return a single gradient, even though cross_entropy is a 1d tensor of shape[None, 1]
.
这是设计使然,因为每个张量的梯度项会自动聚合。梯度计算操作,如 optimizer.compute_gradients
和低级原语 tf.gradients
根据默认的 AddN
聚合方法,对所有梯度操作求和。这对于大多数随机梯度下降的情况都很好。
最后不幸的是,梯度计算将不得不在单个批处理上进行。当然,除非构建自定义梯度函数,或者扩展 TensorFlow API 以提供无需完全聚合的梯度计算。更改 implementation of tf.gradients
做到这一点似乎并不简单。
您可能希望为强化学习模型采用的一个技巧是并行执行多个 session 运行。根据FAQ ,Session API 支持多个并发步骤,将利用现有资源进行并行计算。问题Asynchronous computation in TensorFlow显示如何执行此操作。
关于python - Tensorflow:如何批量获取每个实例的梯度?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45324767/
我正在尝试调整 tf DeepDream 教程代码以使用另一个模型。现在当我调用 tf.gradients() 时: t_grad = tf.gradients(t_score, t_input)[0
考虑到 tensorflow 中 mnist 上的一个简单的小批量梯度下降问题(就像在这个 tutorial 中),我如何单独检索批次中每个示例的梯度。 tf.gradients()似乎返回批次中所有
当我在 numpy 中计算屏蔽数组的梯度时 import numpy as np import numpy.ma as ma x = np.array([100, 2, 3, 5, 5, 5, 10,
除了数值计算之外,是否有一种快速方法来获取协方差矩阵(我的网络激活)的导数? 我试图将其用作深度神经网络中成本函数中的惩罚项,但为了通过我的层反向传播误差,我需要获得导数。 在Matlab中,如果“a
我有一个计算 3D 空间标量场值的函数,所以我为它提供 x、y 和 z 坐标(由 numpy.meshgrid 获得)的 3D 张量,并在各处使用元素运算。这按预期工作。 现在我需要计算标量场的梯度。
我正在使用内核密度估计 (KDE) ( http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.htm
我对 tensorflow gradient documentation 中的示例感到困惑用于计算梯度。 a = tf.constant(0.) b = 2 * a g = tf.gradients(
我有一个 softmax 层(只有激活本身,没有将输入乘以权重的线性部分),我想对其进行向后传递。 我找到了很多关于 SO 的教程/答案来处理它,但它们似乎都使用 X 作为 (1, n_inputs)
仅供引用,我正在尝试使用 Tensorflow 实现梯度下降算法。 我有一个矩阵X [ x1 x2 x3 x4 ] [ x5 x6 x7 x8 ] 我乘以一些特征向量 Y 得到 Z [ y
我目前有一个由几百万个不均匀分布的粒子组成的体积,每个粒子都有一个属性(对于那些好奇的人来说是潜在的),我想为其计算局部力(加速度)。 np.gradient 仅适用于均匀间隔的数据,我在这里查看:S
我正在寻找有关如何实现 Gradient (steepest) Descent 的建议在 C 中。我正在寻找 f(x)=||Ax-y||^2 的最小值,其中给出了 A(n,n) 和 y(n)。 这在
我正在查看 SVM 损失和导数的代码,我确实理解了损失,但我无法理解如何以矢量化方式计算梯度 def svm_loss_vectorized(W, X, y, reg): loss = 0.0 dW
我正在寻找一种有效的方法来计算 Julia 中多维数组的导数。准确地说,我想要一个等效的 numpy.gradient在 Julia 。但是,Julia 函数 diff : 仅适用于二维数组 沿微分维
我在cathesian 2D 系统中有两个点,它们都给了我向量的起点和终点。现在我需要新向量和 x 轴之间的角度。 我知道梯度 = (y2-y1)/(x2-x1) 并且我知道角度 = arctan(g
我有一个 2D 数组正弦模式,想要绘制该函数的 x 和 y 梯度。我有一个二维数组 image_data : def get_image(params): # do some maths on
假设我有一个针对 MNIST 数据的简单 TensorFlow 模型,如下所示 import tensorflow as tf from tensorflow.examples.tutorials.m
我想查看我的 Tensorflow LSTM 随时间变化的梯度,例如,绘制从 t=N 到 t=0 的梯度范数。问题是,如何从 Tensorflow 中获取每个时间步长的梯度? 最佳答案 在图中定义:
我有一个简单的神经网络,我试图通过使用如下回调使用张量板绘制梯度: class GradientCallback(tf.keras.callbacks.Callback): console =
在CIFAR-10教程中,我注意到变量被放置在CPU内存中,但它在cifar10-train.py中有说明。它是使用单个 GPU 进行训练的。 我很困惑..图层/激活是否存储在 GPU 中?或者,梯度
我有一个 tensorflow 模型,其中层的输出是二维张量,例如 t = [[1,2], [3,4]] . 下一层需要一个由该张量的每一行组合组成的输入。也就是说,我需要把它变成t_new = [[
我是一名优秀的程序员,十分优秀!