gpt4 book ai didi

python - 正确实现 SI、SIS、SIR 模型(python)

转载 作者:行者123 更新时间:2023-11-28 17:11:06 34 4
gpt4 key购买 nike

我已经为上述模型创建了一些非常基本的实现。然而,尽管图表看起来是正确的,但数字加起来并不是一个常数。那是因为每个隔间中的易感者/感染者/康复者的总和应该加起来为 N(这是总人数),但事实并非如此,由于某种原因,它加起来是一些奇怪的小数,我真的不知道如何解决它,现在看了 3 天。

SI 模型:

import matplotlib.pyplot as plt

N = 1000000
S = N - 1
I = 1
beta = 0.6

sus = [] # infected compartment
inf = [] # susceptible compartment
prob = [] # probability of infection at time t

def infection(S, I, N):
t = 0
while (t < 100):
S = S - beta * ((S * I / N))
I = I + beta * ((S * I) / N)
p = beta * (I / N)

sus.append(S)
inf.append(I)
prob.append(p)
t = t + 1

infection(S, I, N)
figure = plt.figure()
figure.canvas.set_window_title('SI model')

figure.add_subplot(211)
inf_line, =plt.plot(inf, label='I(t)')

sus_line, = plt.plot(sus, label='S(t)')
plt.legend(handles=[inf_line, sus_line])

plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) # use scientific notation

ax = figure.add_subplot(212)
prob_line = plt.plot(prob, label='p(t)')
plt.legend(handles=prob_line)

type(ax) # matplotlib.axes._subplots.AxesSubplot

# manipulate
vals = ax.get_yticks()
ax.set_yticklabels(['{:3.2f}%'.format(x*100) for x in vals])

plt.xlabel('T')
plt.ylabel('p')

plt.show()

SIS 模型:

import matplotlib.pylab as plt

N = 1000000
S = N - 1
I = 1
beta = 0.3
gamma = 0.1

sus = \[\]
inf = \[\]

def infection(S, I, N):
for t in range (0, 1000):
S = S - (beta*S*I/N) + gamma * I
I = I + (beta*S*I/N) - gamma * I

sus.append(S)
inf.append(I)


infection(S, I, N)

figure = plt.figure()
figure.canvas.set_window_title('SIS model')

inf_line, =plt.plot(inf, label='I(t)')

sus_line, = plt.plot(sus, label='S(t)')
plt.legend(handles=\[inf_line, sus_line\])

plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))

plt.xlabel('T')
plt.ylabel('N')

plt.show()

SIR 型号:

import matplotlib.pylab as plt

N = 1000000
S = N - 1
I = 1
R = 0
beta = 0.5
mu = 0.1

sus = []
inf = []
rec = []

def infection(S, I, R, N):
for t in range (1, 100):
S = S -(beta * S * I)/N
I = I + ((beta * S * I)/N) - R
R = mu * I

sus.append(S)
inf.append(I)
rec.append(R)

infection(S, I, R, N)

figure = plt.figure()
figure.canvas.set_window_title('SIR model')

inf_line, =plt.plot(inf, label='I(t)')

sus_line, = plt.plot(sus, label='S(t)')

rec_line, = plt.plot(rec, label='R(t)')
plt.legend(handles=[inf_line, sus_line, rec_line])

plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))

plt.xlabel('T')
plt.ylabel('N')


plt.show()

最佳答案

我只会看 SI 模型。

您的两个关键变量是SI。 (您可能已经颠倒了这两个变量的含义,尽管这不会影响我在这里写的内容。)您将它们初始化,使它们的总和为 N,即常量 1000000 .

您更新行中的两个关键变量

S = S - beta * ((S * I / N))
I = I + beta * ((S * I) / N)

您显然打算将相同的值加到 I 并从 S 中减去相同的值,因此 SI 不变。但是,实际上你先改变了S,然后用那个新值去改变I,所以加减的值实际上并不相同,变量的总和也没有保持不变。

您可以使用 Python 在一行中更新多个变量的功能来解决此问题。将这两行替换为

S, I = S - beta * ((S * I / N)), I + beta * ((S * I) / N)

这会在更新变量之前计算两个新值,因此实际上从两个变量中添加和减去相同的值。 (还有其他方法可以获得相同的效果,例如更新值的临时变量,或者一个临时变量来存储要添加和减去的量,但是既然你使用 Python,你也可以使用它的功能。)

当我现在运行程序时,我得到了这些图表:

enter image description here

我想这就是你想要的。

关于python - 正确实现 SI、SIS、SIR 模型(python),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47366712/

34 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com