gpt4 book ai didi

python - 用另一种样式制作一个带有形状和偏移量参数的numpy数组

转载 作者:行者123 更新时间:2023-11-28 17:08:24 25 4
gpt4 key购买 nike

我想以 3 元素实体(3d 位置)和单个元素(每个 x、y、z 坐标)的形式访问我的数组。经过一些研究,我最终做了以下事情。

>>> import numpy as np
>>> arr = np.zeros(5, dtype={'pos': (('<f8', (3,)), 0),
'x': (('<f8', 1), 0),
'y': (('<f8', 1), 8),
'z': (('<f8', 1), 16)})
>>> arr["x"] = 0
>>> arr["y"] = 1
>>> arr["z"] = 2

# I can access the whole array by "pos"
>>> print(arr["pos"])
>>> array([[ 1., 2., 3.],
[ 1., 2., 3.],
[ 1., 2., 3.],
[ 1., 2., 3.],
[ 1., 2., 3.]])

但是,我一直以这种方式制作数组:

>>> arr = np.zeros(10, dtype=[("pos", "f8", (3,))])

但是我找不到在这种样式中同时指定元素的偏移量和形状的方法。有没有办法做到这一点?

最佳答案

引用文档页面,https://docs.scipy.org/doc/numpy-1.14.0/reference/arrays.dtypes.html

您正在使用字段字典形式,具有(data-type, offset) value

{'field1': ..., 'field2': ..., ...}

dt1 = {'pos': (('<f8', (3,)), 0),
'x': (('<f8', 1), 0),
'y': (('<f8', 1), 8),
'z': (('<f8', 1), 16)}

结果 dtype 的显示是另一种字典格式:

{'names': ..., 'formats': ..., 'offsets': ..., 'titles': ..., 'itemsize': ...}

In [15]: np.dtype(dt1)
Out[15]: dtype({'names':['x','pos','y','z'],
'formats':['<f8',('<f8', (3,)),'<f8','<f8'],
'offsets':[0,0,8,16], 'itemsize':24})

In [16]: np.dtype(dt1).fields
Out[16]:
mappingproxy({'pos': (dtype(('<f8', (3,))), 0),
'x': (dtype('float64'), 0),
'y': (dtype('float64'), 8),
'z': (dtype('float64'), 16)})

offsets 在文档页面的其他任何地方都没有提到。

最后一种格式是union 类型。尚不清楚是否允许或不鼓励这样做。这些例子似乎不起作用。多字段索引的工作方式发生了一些变化,这可能会影响这一点。

让我们尝试一下查看数组的各种方式:

In [25]: arr
Out[25]:
array([(0., [ 0. , 10. , 0. ], 10., 0. ),
(1., [ 1. , 11. , 0.1], 11., 0.1),
(2., [ 2. , 12. , 0.2], 12., 0.2),
(3., [ 3. , 13. , 0.3], 13., 0.3),
(4., [ 4. , 14. , 0.4], 14., 0.4)],
dtype={'names':['x','pos','y','z'], 'formats':['<f8',('<f8', (3,)),'<f8','<f8'], 'offsets':[0,0,8,16], 'itemsize':24})

In [29]: dt3=[('x','<f8'),('y','<f8'),('z','<f8')]
In [30]: np.dtype(dt3)
Out[30]: dtype([('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
In [31]: np.dtype(dt3).fields
Out[31]:
mappingproxy({'x': (dtype('float64'), 0),
'y': (dtype('float64'), 8),
'z': (dtype('float64'), 16)})
In [32]: arr.view(dt3)
Out[32]:
array([(0., 10., 0. ), (1., 11., 0.1), (2., 12., 0.2), (3., 13., 0.3),
(4., 14., 0.4)], dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')])

In [33]: arr['pos']
Out[33]:
array([[ 0. , 10. , 0. ],
[ 1. , 11. , 0.1],
[ 2. , 12. , 0.2],
[ 3. , 13. , 0.3],
[ 4. , 14. , 0.4]])

In [35]: arr.view('f8').reshape(5,3)
Out[35]:
array([[ 0. , 10. , 0. ],
[ 1. , 11. , 0.1],
[ 2. , 12. , 0.2],
[ 3. , 13. , 0.3],
[ 4. , 14. , 0.4]])

In [37]: arr.view(dt4)
Out[37]:
array([([ 0. , 10. , 0. ],), ([ 1. , 11. , 0.1],),
([ 2. , 12. , 0.2],), ([ 3. , 13. , 0.3],),
([ 4. , 14. , 0.4],)], dtype=[('pos', '<f8', (3,))])
In [38]: arr.view(dt4)['pos']
Out[38]:
array([[ 0. , 10. , 0. ],
[ 1. , 11. , 0.1],
[ 2. , 12. , 0.2],
[ 3. , 13. , 0.3],
[ 4. , 14. , 0.4]])

关于python - 用另一种样式制作一个带有形状和偏移量参数的numpy数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49503565/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com