- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试转换我从 davidsandberg/facenet 获得的卡住模型使用 TF Lite Converter 到 Ubuntu 18.04.1 LTS (VirtualBox) 上的 .tflite (this is the specific model i am using) .当我尝试运行命令时:
/home/nils/.local/bin/tflite_convert
--output_file=/home/nils/Documents/frozen.tflite
--graph_def_file=/home/nils/Documents/20180402-114759/20180402-114759.pb
--input_arrays=input --output_array=embeddings
我收到以下错误:
2018-11-29 16:36:21.774098: I
tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
instructions that this TensorFlow binary was not compiled to use: AVX2
Traceback (most recent call last):
File "/home/nils/.local/bin/tflite_convert", line 11, in <module>
sys.exit(main())
File
"/home/nils/.local/lib/python3.6/site-packages/tensorflow/contrib /lite/python/tflite_convert.py",
line 412, in main
app.run(main=run_main, argv=sys.argv[:1])
File
"/home/nils/.local/lib/python3.6/site-packages/tensorflow/python/platform/app.py",
line 125, in run
_sys.exit(main(argv))
File
"/home/nils/.local/lib/python3.6/site-packages/tensorflow/contrib/lite/python/tflite_convert.py",
line 408, in run_main
_convert_model(tflite_flags)
File
"/home/nils/.local/lib/python3.6/site-packages/tensorflow/contrib/lite/python/tflite_convert.py",
line 162, in _convert_model
output_data = converter.convert()
File
"/home/nils/.local/lib/python3.6/site-packages/tensorflow/contrib/lite/python/lite.py",
line 404, in convert
"'{0}'.".format(_tensor_name(tensor)))
ValueError: Provide an input shape for input array 'input'.
由于我自己没有训练过模型,所以我不知道输入的确切形状。可能可以从 classifier.py 和 facenet.py 中提取它,在 David Sandberg 的 GitHubRep. 中找到,位于 facenet/src,但我对代码的理解不足以让我自己做到这一点。我什至尝试通过张量板分析图表。反正我想不通,但也许你可以:Tensorboard-Screenshot正如您可能已经注意到的那样,我对 Ubuntu、Tensorflow 和所有相关的东西都很陌生,所以我很乐意就这个问题接受任何建议。提前致谢!
这是 classifier.py 的相关部分,模型在此处加载和设置:
# Load the model
print('Loading feature extraction model')
facenet.load_model(args.model)
# Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
embedding_size = embeddings.get_shape()[1]
# Run forward pass to calculate embeddings
print('Calculating features for images')
nrof_images = len(paths)
nrof_batches_per_epoch = int(math.ceil(1.0*nrof_images / args.batch_size))
emb_array = np.zeros((nrof_images, embedding_size))
for i in range(nrof_batches_per_epoch):
start_index = i*args.batch_size
end_index = min((i+1)*args.batch_size, nrof_images)
paths_batch = paths[start_index:end_index]
images = facenet.load_data(paths_batch, False, False, args.image_size)
feed_dict = { images_placeholder:images, phase_train_placeholder:False }
emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict)
classifier_filename_exp = os.path.expanduser(args.classifier_filename)
最佳答案
谢谢你的帮助,我确实像 Alan Chiao 说的那样跟着 load_data() 到 facenet.py,我最终找到了形状 [1,160, 160, 3]。另外,Tensorflow's command line reference for the tf lite converter向我展示了我必须注意的事项:
--input_shapes. Type: colon-separated list of comma-separated lists of integers. Each comma-separated list of integers gives the shape of one of the input arrays specified in TensorFlow convention.
Example: --input_shapes=1,60,80,3 for a typical vision model means a batch size of 1, an input image height of 60, an input image widthof 80, and an input image depth of 3 (representing RGB channels).
关于python - 我如何获得 TOCO tf_convert 的卡住 Tensorflow 模型的 input_shape,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53543872/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!