- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 tensorflow 中的 tf.learn 训练 LSTM。为此,我将数据分为训练 (90%) 和验证 (10%)。据我了解,模型通常比验证数据更适合训练数据,但我得到相反的结果。验证集的损失更低,准确率更高。
正如我在其他答案中所读到的,这可能是因为在验证期间未应用 dropout。然而,当我从我的 LSTM 架构中删除 dropout 时,我的验证损失仍然低于训练损失(尽管差异更小)。
此外,每个时期结束时显示的损失不是每批损失的平均值(就像使用 Keras 时一样)。这是他上一批的损失。我还认为这可能是导致我的结果的一个原因,但事实证明并非如此。
Training samples: 783
Validation samples: 87
--
Training Step: 4 | total loss: 1.08214 | time: 1.327s
| Adam | epoch: 001 | loss: 1.08214 - acc: 0.7549 | val_loss: 0.53043 - val_acc: 0.9885 -- iter: 783/783
--
Training Step: 8 | total loss: 0.41462 | time: 1.117s
| Adam | epoch: 002 | loss: 0.41462 - acc: 0.9759 | val_loss: 0.17027 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 12 | total loss: 0.15111 | time: 1.124s
| Adam | epoch: 003 | loss: 0.15111 - acc: 0.9984 | val_loss: 0.07488 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 16 | total loss: 0.10145 | time: 1.114s
| Adam | epoch: 004 | loss: 0.10145 - acc: 0.9950 | val_loss: 0.04173 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 20 | total loss: 0.26568 | time: 1.124s
| Adam | epoch: 005 | loss: 0.26568 - acc: 0.9615 | val_loss: 0.03077 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 24 | total loss: 0.11023 | time: 1.129s
| Adam | epoch: 006 | loss: 0.11023 - acc: 0.9863 | val_loss: 0.02607 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 28 | total loss: 0.07059 | time: 1.141s
| Adam | epoch: 007 | loss: 0.07059 - acc: 0.9934 | val_loss: 0.01882 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 32 | total loss: 0.03571 | time: 1.122s
| Adam | epoch: 008 | loss: 0.03571 - acc: 0.9977 | val_loss: 0.01524 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 36 | total loss: 0.05084 | time: 1.120s
| Adam | epoch: 009 | loss: 0.05084 - acc: 0.9948 | val_loss: 0.01384 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 40 | total loss: 0.22283 | time: 1.132s
| Adam | epoch: 010 | loss: 0.22283 - acc: 0.9714 | val_loss: 0.01227 - val_acc: 1.0000 -- iter: 783/783
使用的网络(注意dropout已经被注释掉):
def get_network_wide(frames, input_size, num_classes):
"""Create a one-layer LSTM"""
net = tflearn.input_data(shape=[None, frames, input_size])
#net = tflearn.lstm(net, 256, dropout=0.2)
net = tflearn.fully_connected(net, num_classes, activation='softmax')
net = tflearn.regression(net, optimizer='adam',
loss='categorical_crossentropy',metric='default', name='output1')
return net
最佳答案
本质上这不一定是有问题的现象。
发生这种情况的原因有很多,如下所述。
TLosses [0.60,0.59,...0.3(周期结束时在 TS 上的损失)]
-> VLosses [0.3,0.29,0.35](因为模型已经训练了一个与时代开始相比很多。
但是,您的训练集和验证集都非常小。仅当数据非常多(在本例中为数万甚至数十万)时才应进行这种拆分(90% 用于训练,10% 用于验证/开发)。另一方面,您的整个训练集(train + val)的样本少于 1000 个。 您需要更多数据,因为众所周知,LSTM 需要大量训练数据。
然后,您可以尝试使用 KFoldCrossValidation 甚至 StratifiedKFoldCrossValidation。这样,您将确保您没有手动创建一个非常“简单”的验证集,在你总是测试它;相反,你可以有 k-folds,其中 k-1 用于训练,1 用于验证;通过这种方式,您可以避免情况 (1)。
答案就在数据中。 仔细准备,因为结果在很大程度上取决于数据的质量(预处理数据、清理数据、创建相关的训练/验证/测试集)。
关于python - 验证损失低于训练损失训练 LSTM,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56575293/
我无法准确理解 LSTM 单元的范围——它如何映射到网络层。来自格雷夫斯 (2014): 在我看来,在单层网络中,layer = lstm 单元。这实际上如何在多层 rnn 中工作? 三层RNN LS
这是代码 model = Sequential() model.add(LSTM(256, input_shape=(None, 1), return_sequences=True)) model.a
为什么我们需要在pytorch中初始化LSTM中的隐藏状态h0。由于 h0 无论如何都会被计算并被覆盖?是不是很像 整合一个一 = 0 一个= 4 即使我们不做a=0,也应该没问题.. 最佳答案 重点
我正在尝试使用 LSTM 在 Deeplearning4j 中进行一些简单的时间序列预测,但我很难让它工作。 我有一个简单的文本文件,其中包含如下所示的数字列表,并希望网络学习预测下一个数字。 有没有
在大量阅读和绘制图表之后,我想我已经提出了一个模型,我可以将其用作更多测试我需要调整哪些参数和功能的基础。但是,我对如何实现以下测试用例感到困惑(所有数字都比最终模型小几个数量级,但我想从小处着手):
我正在尝试实现“Livelinet:用于预测教育视频中的活力的多模式深度循环神经网络”中的结构。 为了简单说明,我将 10 秒音频剪辑分成 10 个 1 秒音频剪辑,并从该 1 秒音频剪辑中获取频谱图
我正在 Tensorflow 中制作 LSTM 神经网络。 输入张量大小为 92。 import tensorflow as tf from tensorflow.contrib import rnn
我正在尝试 keras IMDB 数据的示例,数据形状是这样的: x_train shape: (25000, 80) 我只是把keras例子的原始代码改成了这样的代码: model = Sequen
我需要了解如何使用 torch.nn 的不同组件正确准备批量训练的输入。模块。具体来说,我希望为 seq2seq 模型创建一个编码器-解码器网络。 假设我有一个包含这三层的模块,按顺序: nn.Emb
我很难概念化 Keras 中有状态 LSTM 和无状态 LSTM 之间的区别。我的理解是,在每个批处理结束时,在无状态情况下“网络状态被重置”,而对于有状态情况,网络状态会为每个批处理保留,然后必须在
nn.Embedding() 是学习 LSTM 所必需的吗? 我在 PyTorch 中使用 LSTM 来预测 NER - 此处是类似任务的示例 - https://pytorch.org/tutori
我正在尝试找出适合我想要拟合的模型的正确语法。这是一个时间序列预测问题,我想在将时间序列输入 LSTM 之前使用一些密集层来改进时间序列的表示。 这是我正在使用的虚拟系列: import pandas
我在理解堆叠式 LSTM 网络中各层的输入-输出流时遇到了一些困难。假设我已经创建了一个如下所示的堆叠式 LSTM 网络: # parameters time_steps = 10 features
LSTM 类中的默认非线性激活函数是 tanh。我希望在我的项目中使用 ReLU。浏览文档和其他资源,我无法找到一种简单的方法来做到这一点。我能找到的唯一方法是定义我自己的自定义 LSTMCell,但
在 PyTorch 中,有一个 LSTM 模块,除了输入序列、隐藏状态和单元状态之外,它还接受 num_layers 参数,该参数指定我们的 LSTM 有多少层。 然而,还有另一个模块 LSTMCel
没什么好说的作为介绍:我想在 TensorFlow 中将 LSTM 堆叠在另一个 LSTM 上,但一直被错误阻止,我不太明白,更不用说单独解决了。 代码如下: def RNN(_X, _istate,
有人可以解释一下吗?我知道双向 LSTM 具有前向和反向传递,但是与单向 LSTM 相比,它有什么优势? 它们各自更适合什么? 最佳答案 LSTM 的核心是使用隐藏状态保留已经通过它的输入信息。 单向
我想构建一个带有特殊词嵌入的 LSTM,但我对它的工作原理有一些疑问。 您可能知道,一些 LSTM 对字符进行操作,因此它是字符输入,字符输出。我想做同样的事情,通过对单词的抽象来学习使用嵌套的 LS
我编写了一个LSTM回归模型。它是最后一个LSTM层的BATCH_SIZE=1和RETURN_Sequence=True的模型。我还设置了VERIFICATION_DATA和耐心进行培训。但似乎存在一
给定一个训练有素的 LSTM 模型,我想对单个时间步执行推理,即以下示例中的 seq_length = 1。在每个时间步之后,需要为下一个“批处理”记住内部 LSTM(内存和隐藏)状态。在推理的最开始
我是一名优秀的程序员,十分优秀!