gpt4 book ai didi

python - 当有多个规范时,在 Pandas 中优化计算的最佳做法是什么?

转载 作者:行者123 更新时间:2023-11-28 16:56:56 26 4
gpt4 key购买 nike

我在查询规范很多的时候经常遇到一个问题,如何加快这个过程?

基本上我真的经常使用apply 函数来获得结果,但很多时候,计算需要很长的时间

是否有好的做法来找到如何优化 Pandas 代码?

这是一个示例,我有一个 DataFrame 表示包含 3 列的聊天交换:

  • timestamp:消息的时间戳
  • sender_id: 发件人id
  • receiver_id: 接收方id

目标是找到在不到 5 分钟内得到响应的消息的比例。这是我的代码:

import pandas as pd
import numpy as np
import datetime

size_df = 30000
np.random.seed(42)

data = {
'timestamp': pd.date_range('2019-03-01', periods=size_df, freq='30S').astype(int),
'sender_id': np.random.randint(5, size=size_df),
'receiver_id': np.random.randint(5, size=size_df)
}

dataframe = pd.DataFrame(data)

这是 DataFrame 的样子:

print(dataframe.head().to_string())
timestamp sender_id receiver_id
0 1551398400000000000 4 2
1 1551398430000000000 3 2
2 1551398460000000000 1 1
3 1551398490000000000 4 3
4 1551398520000000000 4 3

apply使用的函数:

def apply_find_next_answer_within_5_min(row):
"""
Find the index of the next response in a range of 5 minutes
"""
[timestamp, sender, receiver] = row
## find the next responses from receiver to sender in the next 5 minutes
next_responses = df_groups.get_group((receiver, sender))["timestamp"]\
.loc[lambda x: (x > timestamp) & (x < timestamp + 5 * 60 * 1000 * 1000 * 1000)]
## if there is no next responses just return NaN
if not next_responses.size:
return np.nan
## find the next messages from sender to receiver in the next 5 minutes
next_messages = df_groups.get_group((sender, receiver))["timestamp"]\
.loc[lambda x: (x > timestamp) & (x < timestamp + 5 * 60 * 1000 * 1000 * 1000)]

## if the first next message is before next response return nan else return index next reponse
return np.nan if next_messages.size and next_messages.iloc[0] < next_responses.iloc[0] else next_responses.index[0]

%%timeit
df_messages = dataframe.copy()
## create a dataframe to easily find messages from a specific sender and receiver, speed up the querying process for these messages.
df_groups = df_messages.groupby(["sender_id", "receiver_id"])
df_messages["next_message"] = df_messages.apply(lambda row: apply_find_next_answer_within_5_min(row), axis=1)

输出timeit:

42 s ± 2.16 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

因此,为 30 000 行 DataFrame 应用该函数需要 42 秒。我认为它很长,但我没有找到提高效率的方法。通过使用对发送方和接收方进行分组的中间数据帧而不是在应用函数中查询大数据帧,我已经获得了 40 秒

这将是这个特定问题的响应:

1 - df_messages.next_message[lambda x: pd.isnull(x)].size / df_messages.next_message.size
0.2753

那么在这种情况下,您如何找到更有效的计算方法呢?有什么技巧可以考虑吗?

在这个例子中,我认为不可能一直使用矢量化,但也许通过使用更多的组,可以更快?

最佳答案

您可以尝试对您的数据框进行分组

groups = dataframe.reset_index()\ #I reset_index for later to get the value
.groupby([ frozenset([se, re]) #need frosenset to allow the groupby
for se, re in dataframe[['sender_id', 'receiver_id']].values])

现在您可以创建符合条件的 bool 掩码

mask_1 = (  # within a group, check if the following message is sent from the other one
(groups.sender_id.diff(-1).ne(0)
# or if the person talks to oneself
| dataframe.sender_id.eq(dataframe.receiver_id) )
# and check if the following message is within 5 min
& groups.timestamp.diff(-1).gt(-5*60*1000*1000*1000))

现在使用掩码查找索引创建列并在索引上移动:

df_messages.loc[mask_1, 'next_message'] = groups['index'].shift(-1)[mask_1]

你喜欢你的方法并且应该更快:

print (df_messages.head(20))
timestamp sender_id receiver_id next_message
0 1551398400000000000 3 1 NaN
1 1551398430000000000 4 1 NaN
2 1551398460000000000 2 3 NaN
3 1551398490000000000 4 1 NaN
4 1551398520000000000 4 3 NaN
5 1551398550000000000 1 1 NaN
6 1551398580000000000 2 3 10.0
7 1551398610000000000 2 4 NaN
8 1551398640000000000 2 4 NaN
9 1551398670000000000 4 1 NaN
10 1551398700000000000 3 2 NaN
11 1551398730000000000 2 4 NaN
12 1551398760000000000 4 0 18.0
13 1551398790000000000 1 0 NaN
14 1551398820000000000 3 3 16.0
15 1551398850000000000 1 2 NaN
16 1551398880000000000 3 3 NaN
17 1551398910000000000 4 1 NaN
18 1551398940000000000 0 4 NaN
19 1551398970000000000 3 2 NaN

关于python - 当有多个规范时,在 Pandas 中优化计算的最佳做法是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57467204/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com