gpt4 book ai didi

python - 跳过 NaN 值以获得距离

转载 作者:行者123 更新时间:2023-11-28 16:56:48 24 4
gpt4 key购买 nike

我的部分数据集(实际上我的数据集大小 (106,1800)):

df =

    1           1.1     2           2.1     3           3.1     4           4.1     5           5.1
0 43.1024 6.7498 NaN NaN NaN NaN NaN NaN NaN NaN
1 46.0595 1.6829 25.0695 3.7463 NaN NaN NaN NaN NaN NaN
2 25.0695 5.5454 44.9727 8.6660 41.9726 2.6666 84.9566 3.8484 44.9566 1.8484
3 35.0281 7.7525 45.0322 3.7465 14.0369 3.7463 NaN NaN NaN NaN
4 35.0292 7.5616 45.0292 4.5616 23.0292 3.5616 45.0292 6.7463 NaN NaN

根据 Tom 的回答,我现在可以做什么:

  • 我手动写了 1-st 2 行,比如 p 和 q 值:

p =

[[45.1024,7.7498],[45.1027,7.7513],[45.1072,7.7568],[45.1076,7.7563]]

q=

[[45.0595,7.6829],[45.0595,7.6829],[45.0564,7.6820],[45.0533,7.6796],[45.0501,7.6775]]

然后:

__all__ = ['frdist']


def _c(ca, i, j, p, q):

if ca[i, j] > -1:
return ca[i, j]
elif i == 0 and j == 0:
ca[i, j] = np.linalg.norm(p[i]-q[j])
elif i > 0 and j == 0:
ca[i, j] = max(_c(ca, i-1, 0, p, q), np.linalg.norm(p[i]-q[j]))
elif i == 0 and j > 0:
ca[i, j] = max(_c(ca, 0, j-1, p, q), np.linalg.norm(p[i]-q[j]))
elif i > 0 and j > 0:
ca[i, j] = max(
min(
_c(ca, i-1, j, p, q),
_c(ca, i-1, j-1, p, q),
_c(ca, i, j-1, p, q)
),
np.linalg.norm(p[i]-q[j])
)
else:
ca[i, j] = float('inf')

return ca[i, j]

然后:

def frdist(p, q):

# Remove nan values from p
p = np.array([i for i in p if np.any(np.isfinite(i))], np.float64)
q = np.array([i for i in q if np.any(np.isfinite(i))], np.float64)

len_p = len(p)
len_q = len(q)

if len_p == 0 or len_q == 0:
raise ValueError('Input curves are empty.')

# p and q will no longer be the same length
if len(p[0]) != len(q[0]):
raise ValueError('Input curves do not have the same dimensions.')

ca = (np.ones((len_p, len_q), dtype=np.float64) * -1)

dist = _c(ca, len_p-1, len_q-1, p, q)
return(dist)

frdist(p, q)

它有效。但是我如何将 p 和 q 应用于整个数据集呢?不是逐行选择吗?

最后我需要得到 106 到 106 对角线为 0 的对称矩阵

最佳答案

删除 NaN

简单明了:

p = p[~np.isnan(p)]


计算整个数据集的 Fréchet 距离

最简单的方法是使用成对距离计算 pdist来自 SciPy。它需要 n 维度数组的 m 观察,因此我们需要在 中使用 reshape(-1,2) reshape 我们的行数组>frdistpdist 返回压缩(上三角)距离矩阵。我们使用 squareform根据要求获得对角线为 0m x m 对称矩阵。

import pandas as pd
import numpy as np
import io
from scipy.spatial.distance import pdist, squareform

data = """ 1 1.1 2 2.1 3 3.1 4 4.1 5 5.1
0 43.1024 6.7498 NaN NaN NaN NaN NaN NaN NaN NaN
1 46.0595 1.6829 25.0695 3.7463 NaN NaN NaN NaN NaN NaN
2 25.0695 5.5454 44.9727 8.6660 41.9726 2.6666 84.9566 3.8484 44.9566 1.8484
3 35.0281 7.7525 45.0322 3.7465 14.0369 3.7463 NaN NaN NaN NaN
4 35.0292 7.5616 45.0292 4.5616 23.0292 3.5616 45.0292 6.7463 NaN NaN
"""
df = pd.read_csv(io.StringIO(data), sep='\s+')

def _c(ca, i, j, p, q):

if ca[i, j] > -1:
return ca[i, j]
elif i == 0 and j == 0:
ca[i, j] = np.linalg.norm(p[i]-q[j])
elif i > 0 and j == 0:
ca[i, j] = max(_c(ca, i-1, 0, p, q), np.linalg.norm(p[i]-q[j]))
elif i == 0 and j > 0:
ca[i, j] = max(_c(ca, 0, j-1, p, q), np.linalg.norm(p[i]-q[j]))
elif i > 0 and j > 0:
ca[i, j] = max(
min(
_c(ca, i-1, j, p, q),
_c(ca, i-1, j-1, p, q),
_c(ca, i, j-1, p, q)
),
np.linalg.norm(p[i]-q[j])
)
else:
ca[i, j] = float('inf')

return ca[i, j]

def frdist(p, q):

# Remove nan values and reshape into two column array
p = p[~np.isnan(p)].reshape(-1,2)
q = q[~np.isnan(q)].reshape(-1,2)

len_p = len(p)
len_q = len(q)

if len_p == 0 or len_q == 0:
raise ValueError('Input curves are empty.')

# p and q will no longer be the same length
if len(p[0]) != len(q[0]):
raise ValueError('Input curves do not have the same dimensions.')

ca = (np.ones((len_p, len_q), dtype=np.float64) * -1)

dist = _c(ca, len_p-1, len_q-1, p, q)
return(dist)

print(squareform(pdist(df.values, frdist)))

结果:

[[ 0.         18.28131545 41.95464432 29.22027212 20.32481187]
[18.28131545 0. 38.9573328 12.59094238 20.18389517]
[41.95464432 38.9573328 0. 39.92453004 39.93376923]
[29.22027212 12.59094238 39.92453004 0. 31.13715882]
[20.32481187 20.18389517 39.93376923 31.13715882 0. ]]


无需重新发明轮子

Fréchet 距离计算已由 similaritymeasures 提供.所以下面会给你和上面一样的结果:

from scipy.spatial.distance import pdist, squareform
import similaritymeasures

def frechet(p, q):
p = p[~np.isnan(p)].reshape(-1,2)
q = q[~np.isnan(q)].reshape(-1,2)
return similaritymeasures.frechet_dist(p,q)

print(squareform(pdist(df.values, frechet)))

关于python - 跳过 NaN 值以获得距离,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57654577/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com