- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在 Python 3 中执行两个样本的 KS 测试,以检测分布之间的任何显着差异。为了方便起见,让a和b我要比较的.csv数据列,我干脆跑了下面的“代码”:
from scipy.stats import ks_2samp
ks_2samp(a, b)
返回值包含最大距离(statistics
)和p值(pvalue
):
Ks_2sampResult(statistic=0.0329418537762845, pvalue=0.000127997328482532)
我想知道的是,由于ks_2samp
只处理双侧双样本KS Test,有没有办法在Python中执行单侧双样本KS Test?
另外,如何找出距离最大的位置呢? (x 轴值)。
最佳答案
scipy.stats.ks_2samp
已经支持你想要的。您只需要告诉您要测试的方向,即假定哪个样本大于或小于另一个样本。
但是,这个用于设置 alternative
的选项仅在 scipy 1.3.0 之后可用。
ks_2samp(a, b, alternative='less') # get p-value for testing if a < b
ks_2samp(a, b, alternative='greater') # get p-value for testing if a > b
编辑:要确定发生最大差异的 x 值,可以使用此函数(主要是从 ks_2samp
的源代码中复制粘贴):
def ks_2samp_x(data1, data2, alternative="two-sided"):
data1 = np.sort(data1)
data2 = np.sort(data2)
n1 = data1.shape[0]
n2 = data2.shape[0]
data_all = np.concatenate([data1, data2])
# using searchsorted solves equal data problem
cdf1 = np.searchsorted(data1, data_all, side='right') / n1
cdf2 = np.searchsorted(data2, data_all, side='right') / n2
cddiffs = cdf1 - cdf2
minS = np.argmin(cddiffs) # ks_2samp uses np.min or np.max respectively
maxS = np.argmax(cddiffs) # now we get instead the index in data_all
alt2Dvalue = {'less': minS, 'greater': maxS, 'two-sided': max(minS, maxS)}
d_arg = alt2Dvalue[alternative]
return data_all[d_arg]
关于python - 如何在 Python 中执行单尾双样本 Kolmogorov–Smirnov 检验?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58287132/
给定infinite time ,我们可以接近字符串的确切 Kolmogorov complexity .如果我们没有无限时间,我们仍然可以计算字符串的 Kolmogorov 复杂度的上限: ...s
我正在寻找一种可以计算给定输入字符串的 Kolmogorov 复杂度近似值的算法。因此,如果 K 是字符串 S 的 Kolmogorov 复杂度,而 t 表示时间,则该函数的行为类似于这样......
你好 我需要在应用中使用这个 Kolmogorov 过滤器。您将一些测量数据放入其中,并使用过滤器对其进行一些平滑处理。我试着用“nchoosek”来做,但是当我尝试为 50 或更多的 I 做这件事时
我正在研究使用压缩来衡量文档与文档语料库之间的关系。在这样做的过程中,我在使用 bzip2 时发现了一个奇怪的结果; len(compress(corpus)) > len(compress(corp
据说,不可压缩性方法可以简化对一般情况的算法分析。据我了解,这是因为不需要计算该算法的所有可能输入组合,然后得出平均复杂度。相反,将单个不可压缩的字符串作为输入。由于不可压缩字符串是典型的,我们可以假
我很难让 ks.test 使用卡方分布式数据: > chi10 ks.test(chi10, dchisq, df=10) One-sample Kolmogorov-Smirnov tes
我正在寻找一个基于Python的Kolmogorov-Zurbenko过滤器,它接收时间序列输入并根据窗口大小和迭代次数对其进行过滤,但尚未找到任何似乎有效的东西。有人比我运气更好吗? 谢谢! 最佳答
我正在寻找一种为 MathCad 生成 Kolmogorov-Chapman 方程来解决马尔可夫链问题的方法。问题是找到系统处于其中一种状态的概率。系统有N个组件。我有一个包含 2^N 个节点(状态)
已关闭。此问题旨在寻求有关书籍、工具、软件库等的建议。不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以
我说的是用 python 公式检索这个表媒体的值 https://www.soest.hawaii.edu/GG/FACULTY/ITO/GG413/K_S_Table_one_Sample.pdf
假设我们有两个样本 data1 和 data2 以及它们各自的权重 weight1 和 weight2 并且我们想计算两个加权样本之间的 Kolmogorov-Smirnov 统计量。 我们在 pyt
我正在尝试为我的数据获得最佳分布。试衣完成如下图所示,但我需要测量,以选择最佳型号。我将拟合优度与卡方值进行比较,并使用 Kolmogorov-Smirnov (KS) 检验检验观察分布和拟合分布之间
我使用以下Python代码向学生演示随机变量的生成: import numpy as np import scipy.stats as stats def lcg(n, x0, M=2**32, a=
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 7 年前。 Improve this qu
在进行重要性抽样实验时,我模拟了 Kolmogorov-Smirnov 距离的值 $$ D_n =\max_x |\hat{F}_n(x)-F(x)| $$ 其中 $n$ 是原始重要性样本的大小,我想
柯尔莫哥洛夫-斯米尔诺夫统计量定义为经验累积分布函数与假设累积分布函数之间的最大距离。我认为,与其看数字,不如使用图表来找出最大差异。 我知道如何绘制经验分布函数 p1<-qplot(rnorm(30
我对 R 中的 ks 函数有疑问。我有一个拉普拉斯分布: ldes <- function(y, a) { if(y < 0.5) 1/a*log(2*y, 2) else 1/a*log(
我在 Spark 中有两组数据(我们称它们为 d1、d2)。我想执行两个样本柯尔莫哥洛夫-斯米尔诺夫检验,以测试它们的底层总体分布函数是否不同。 MLLib 的 Statistics.kolmogor
我设计了 3000 个实验,因此在一个实验中有 4 组(治疗组),每组有 50 个人(受试者)。对于每个实验,我都会做一个标准的单向方差分析,并证明它们的 p.values 在零假设下是否具有单一概率
我有一组实验值和一个概率密度函数,据说可以描述它们的分布: def bekkers(x, a, m, d): p = a*np.exp((-1*(x**(1/3) - m)**2)/(2*d*
我是一名优秀的程序员,十分优秀!