- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 Pandas
作为从 Selenium
写入数据的方式。
网页上搜索框 ac_results
的两个示例结果:
#Search for product_id = "01"
ac_results = "Orange (10)"
#Search for product_id = "02"
ac_result = ["Banana (10)", "Banana (20)", "Banana (30)"]
Orange 仅返回一个价格(10 美元),而 Banana 返回来自不同供应商的可变数量的价格,在本例中为三个价格(10 美元)、20 美元、30 美元。
该代码通过 re.findall
使用正则表达式获取每个价格并将它们放入列表中。只要 re.findall
只找到一个列表项,代码就可以正常工作,就像 Oranges 一样。问题是当价格数量可变时,例如在搜索 Bananas 时。我想为每个规定的价格创建一个新行,这些行还应包括 product_id
和 item_name
。
当前输出:
product_id prices item_name
01 10 Orange
02 [u'10', u'20', u'30'] Banana
期望的输出:
product_id prices item_name
01 10 Orange
02 10 Banana
02 20 Banana
02 30 Banana
当前代码:
df = pd.read_csv("product_id.csv")
def crawl(product_id):
#Enter search input here, omitted
#Getting results:
search_result = driver.find_element_by_class_name("ac_results")
item_name = re.match("^.*(?=(\())", search_result.text).group().encode("utf-8")
prices = re.findall("((?<=\()[0-9]*)", search_reply.text)
return pd.Series([prices, item_name])
df[["prices", "item_name"]] = df["product_id"].apply(crawl)
df.to_csv("write.csv", index=False)
仅供引用:使用 csv
模块的可行解决方案,但我想使用 Pandas
。
with open("write.csv", "a") as data_write:
wr_data = csv.writer(data_write, delimiter = ",")
for price in prices: #<-- This is the important part!
wr_insref.writerow([product_id, price, item_name])
最佳答案
# initializing here for reproducibility
pids = ['01','02']
prices = [10, [u'10', u'20', u'30']]
names = ['Orange','Banana']
df = pd.DataFrame({"product_id": pids, "prices": prices, "item_name": names})
以下代码段应该在您的apply(crawl)
之后工作。
# convert all of the prices to lists (even if they only have one element)
df.prices = df.prices.apply(lambda x: x if isinstance(x, list) else [x])
# Create a new dataframe which splits the lists into separate columns.
# Then flatten using stack. The explicit MultiIndex allows us to keep
# the item_name and product_id associated with each price.
idx = pd.MultiIndex.from_tuples(zip(*[df['item_name'],df['product_id']]),
names = ['item_name', 'product_id'])
df2 = pd.DataFrame(df.prices.tolist(), index=idx).stack()
# drop the hierarchical index and select columns of interest
df2 = df2.reset_index()[['product_id', 0, 'item_name']]
# rename back to prices
df2.columns = ['product_id', 'prices', 'item_name']
关于python - Pandas 从系列列表中写入可变数量的新行,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30922939/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!