- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试实现人口蒙特卡罗算法,如 this 中所述论文(参见第 78 页图 3)使用 Python 的一个参数的简单模型(参见函数 model()
)。不幸的是,该算法不起作用,我无法弄清楚出了什么问题。请参阅下面的实现。实际函数称为 abc()
。所有其他功能都可以看作是辅助功能,并且似乎工作正常。
为了检查算法是否有效,我首先生成观测数据,并将模型的唯一参数设置为 param = 8。因此,ABC 算法产生的后验应该以 8 为中心。事实并非如此,我想知道为什么。
如有任何帮助或意见,我将不胜感激。
# imports
from math import exp
from math import log
from math import sqrt
import numpy as np
import random
from scipy.stats import norm
# globals
N = 300 # sample size
N_PARTICLE = 300 # number of particles
ITERS = 5 # number of decreasing thresholds
M = 10 # number of words to remember
MEAN = 7 # prior mean of parameter
SD = 2 # prior sd of parameter
def model(param):
recall_prob_all = 1/(1 + np.exp(M - param))
recall_prob_one_item = np.exp(np.log(recall_prob_all) / float(M))
return sum([1 if random.random() < recall_prob_one_item else 0 for item in range(M)])
## example
print "Output of model function: \n" + str(model(10)) + "\n"
# generate data from model
def generate(param):
out = np.empty(N)
for i in range(N):
out[i] = model(param)
return out
## example
print "Output of generate function: \n" + str(generate(10)) + "\n"
# distance function (sum of squared error)
def distance(obsData,simData):
out = 0.0
for i in range(len(obsData)):
out += (obsData[i] - simData[i]) * (obsData[i] - simData[i])
return out
## example
print "Output of distance function: \n" + str(distance([1,2,3],[4,5,6])) + "\n"
# sample new particles based on weights
def sample(particles, weights):
return np.random.choice(particles, 1, p=weights)
## example
print "Output of sample function: \n" + str(sample([1,2,3],[0.1,0.1,0.8])) + "\n"
# perturbance function
def perturb(variance):
return np.random.normal(0,sqrt(variance),1)[0]
## example
print "Output of perturb function: \n" + str(perturb(1)) + "\n"
# compute new weight
def computeWeight(prevWeights,prevParticles,prevVariance,currentParticle):
denom = 0.0
proposal = norm(currentParticle, sqrt(prevVariance))
prior = norm(MEAN,SD)
for i in range(len(prevParticles)):
denom += prevWeights[i] * proposal.pdf(prevParticles[i])
return prior.pdf(currentParticle)/denom
## example
prevWeights = [0.2,0.3,0.5]
prevParticles = [1,2,3]
prevVariance = 1
currentParticle = 2.5
print "Output of computeWeight function: \n" + str(computeWeight(prevWeights,prevParticles,prevVariance,currentParticle)) + "\n"
# normalize weights
def normalize(weights):
return weights/np.sum(weights)
## example
print "Output of normalize function: \n" + str(normalize([3.,5.,9.])) + "\n"
# sampling from prior distribution
def rprior():
return np.random.normal(MEAN,SD,1)[0]
## example
print "Output of rprior function: \n" + str(rprior()) + "\n"
# ABC using Population Monte Carlo sampling
def abc(obsData,eps):
draw = 0
Distance = 1e9
variance = np.empty(ITERS)
simData = np.empty(N)
particles = np.empty([ITERS,N_PARTICLE])
weights = np.empty([ITERS,N_PARTICLE])
for t in range(ITERS):
if t == 0:
for i in range(N_PARTICLE):
while(Distance > eps[t]):
draw = rprior()
simData = generate(draw)
Distance = distance(obsData,simData)
Distance = 1e9
particles[t][i] = draw
weights[t][i] = 1./N_PARTICLE
variance[t] = 2 * np.var(particles[t])
continue
for i in range(N_PARTICLE):
while(Distance > eps[t]):
draw = sample(particles[t-1],weights[t-1])
draw += perturb(variance[t-1])
simData = generate(draw)
Distance = distance(obsData,simData)
Distance = 1e9
particles[t][i] = draw
weights[t][i] = computeWeight(weights[t-1],particles[t-1],variance[t-1],particles[t][i])
weights[t] = normalize(weights[t])
variance[t] = 2 * np.var(particles[t])
return particles[ITERS-1]
true_param = 9
obsData = generate(true_param)
eps = [15000,10000,8000,6000,3000]
posterior = abc(obsData,eps)
#print posterior
最佳答案
我在寻找 PMC 算法的 pythonic 实现时偶然发现了这个问题,因为非常巧合的是,我目前正在将这篇确切论文中的技术应用到我自己的研究中。
你能发布你得到的结果吗?我的猜测是 1) 您使用的距离函数(和/或相似性阈值)选择不当,或者 2) 您没有使用足够的粒子。我在这里可能是错的(我不是很精通样本统计),但你的距离函数暗示我随机抽取的顺序很重要。我必须更多地考虑这个以确定它是否真的对收敛特性有任何影响(可能不会),但你为什么不简单地使用平均值或中位数作为你的样本统计量?
我使用 1000 个粒子和真实参数值为 8 运行您的代码,同时使用样本均值之间的绝对差作为我的距离函数,进行三次迭代,epsilons 为 [0.5, 0.3, 0.1];我估计的后验分布的峰值似乎在每次迭代时都接近 8,同时总体方差也在减少。请注意,仍然存在明显的向右偏差,但这是因为模型的不对称性(8 或更小的参数值永远不会导致超过 8 个观察到的成功,而所有大于 8 的参数值都可以,导致向右分布中的偏态)。
这是我的结果图:
关于python - 人口蒙特卡洛实现,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37496969/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!