gpt4 book ai didi

c++ - 在 SWIFT 中使用 C++ FFT 代码

转载 作者:行者123 更新时间:2023-11-28 15:15:41 27 4
gpt4 key购买 nike

我有 C++ FFT 代码(粘贴在下面)。

在 C++ 中,当我在 main() 中输入时,RL_Input = {1,2,-3,4}, IM_Input = {-4,3,2,1},我得到的答案是 RL_Output = {4, 6, -8, 2}, IM_Output = {2, -4, -6, -8}。

我想从 SWIFT 调用此 C++ 代码。所以,在 SWIFT 中,我想做如下事情:

   let (RL_Output, IM_Output) = Some_Swift_Function([1,2,-3,4], [-4,3,2,1]) // INPUT RL & IM
print(RL_Output)
print(IM_Output)

// RL_Output = [4, 6, -8, 2] //Answer (REAL)
// IM_Output = [2, -4, -6, -8] //Answer (IMAG)

如何使用我拥有的 C++ 代码(如下所示)执行上述操作?

    //FftRealPairTest.cpp
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <random>
#include <vector>
#include "FftRealPair.hpp"

using std::cout;
using std::endl;
using std::vector;

int main() {
    vector<double> inputreal({1,2,-3,4});

    vector<double> inputimag({-4,3,2,1});

    vector<double> actualoutreal(inputreal);

    vector<double> actualoutimag(inputimag);

    Fft::transform(actualoutreal, actualoutimag);

    std::cout << "REAL:" << std::endl;
    for (int i = 0; i < inputimag.size(); ++i)
    {
        std::cout << actualoutreal[i] << std::endl;
    }


    std::cout << "IMAG" << std::endl;
    for (int i = 0; i < inputimag.size(); ++i)
    {
        std::cout << actualoutimag[i] << std::endl;
    }
    
}


/////////////////////////////////////////////////

//FftRealPair.cpp
/*
 * Free FFT and convolution (C++)
 *
 * Copyright (c) 2017 Project Nayuki. (MIT License)
 * https://www.nayuki.io/page/free-small-fft-in-multiple-languages
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 * - The above copyright notice and this permission notice shall be included in
 *   all copies or substantial portions of the Software.
 * - The Software is provided "as is", without warranty of any kind, express or
 *   implied, including but not limited to the warranties of merchantability,
 *   fitness for a particular purpose and noninfringement. In no event shall the
 *   authors or copyright holders be liable for any claim, damages or other
 *   liability, whether in an action of contract, tort or otherwise, arising from,
 *   out of or in connection with the Software or the use or other dealings in the
 *   Software.
 */

#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include "FftRealPair.hpp"

using std::size_t;
using std::vector;


// Private function prototypes
static size_t reverseBits(size_t x, int n);


void Fft::transform(vector<double> &real, vector<double> &imag) {
    size_t n = real.size();
    if (n != imag.size())
        throw "Mismatched lengths";
    if (n == 0)
        return;
    else if ((n & (n - 1)) == 0)  // Is power of 2
        transformRadix2(real, imag);
    else  // More complicated algorithm for arbitrary sizes
        transformBluestein(real, imag);
}


void Fft::inverseTransform(vector<double> &real, vector<double> &imag) {
    transform(imag, real);
}


void Fft::transformRadix2(vector<double> &real, vector<double> &imag) {
    // Length variables
    size_t n = real.size();
    if (n != imag.size())
        throw "Mismatched lengths";
    int levels = 0;  // Compute levels = floor(log2(n))
    for (size_t temp = n; temp > 1U; temp >>= 1)
        levels++;
    if (static_cast<size_t>(1U) << levels != n)
        throw "Length is not a power of 2";

    // Trignometric tables
    vector<double> cosTable(n / 2);
    vector<double> sinTable(n / 2);
    for (size_t i = 0; i < n / 2; i++) {
        cosTable[i] = std::cos(2 * M_PI * i / n);
        sinTable[i] = std::sin(2 * M_PI * i / n);
    }

    // Bit-reversed addressing permutation
    for (size_t i = 0; i < n; i++) {
        size_t j = reverseBits(i, levels);
        if (j > i) {
            std::swap(real[i], real[j]);
            std::swap(imag[i], imag[j]);
        }
    }

    // Cooley-Tukey decimation-in-time radix-2 FFT
    for (size_t size = 2; size <= n; size *= 2) {
        size_t halfsize = size / 2;
        size_t tablestep = n / size;
        for (size_t i = 0; i < n; i += size) {
            for (size_t j = i, k = 0; j < i + halfsize; j++, k += tablestep) {
                size_t l = j + halfsize;
                double tpre =  real[l] * cosTable[k] + imag[l] * sinTable[k];
                double tpim = -real[l] * sinTable[k] + imag[l] * cosTable[k];
                real[l] = real[j] - tpre;
                imag[l] = imag[j] - tpim;
                real[j] += tpre;
                imag[j] += tpim;
            }
        }
        if (size == n)  // Prevent overflow in 'size *= 2'
            break;
    }
}


void Fft::transformBluestein(vector<double> &real, vector<double> &imag) {
    // Find a power-of-2 convolution length m such that m >= n * 2 + 1
    size_t n = real.size();
    if (n != imag.size())
        throw "Mismatched lengths";
    size_t m = 1;
    while (m / 2 <= n) {
        if (m > SIZE_MAX / 2)
            throw "Vector too large";
        m *= 2;
    }

    // Trignometric tables
    vector<double> cosTable(n), sinTable(n);
    for (size_t i = 0; i < n; i++) {
        unsigned long long temp = static_cast<unsigned long long>(i) * i;
        temp %= static_cast<unsigned long long>(n) * 2;
        double angle = M_PI * temp / n;
        // Less accurate alternative if long long is unavailable: double angle = M_PI * i * i / n;
        cosTable[i] = std::cos(angle);
        sinTable[i] = std::sin(angle);
    }

    // Temporary vectors and preprocessing
    vector<double> areal(m), aimag(m);
    for (size_t i = 0; i < n; i++) {
        areal[i] =  real[i] * cosTable[i] + imag[i] * sinTable[i];
        aimag[i] = -real[i] * sinTable[i] + imag[i] * cosTable[i];
    }
    vector<double> breal(m), bimag(m);
    breal[0] = cosTable[0];
    bimag[0] = sinTable[0];
    for (size_t i = 1; i < n; i++) {
        breal[i] = breal[m - i] = cosTable[i];
        bimag[i] = bimag[m - i] = sinTable[i];
    }

    // Convolution
    vector<double> creal(m), cimag(m);
    convolve(areal, aimag, breal, bimag, creal, cimag);

    // Postprocessing
    for (size_t i = 0; i < n; i++) {
        real[i] =  creal[i] * cosTable[i] + cimag[i] * sinTable[i];
        imag[i] = -creal[i] * sinTable[i] + cimag[i] * cosTable[i];
    }
}


void Fft::convolve(const vector<double> &x, const vector<double> &y, vector<double> &out) {
    size_t n = x.size();
    if (n != y.size() || n != out.size())
        throw "Mismatched lengths";
    vector<double> outimag(n);
    convolve(x, vector<double>(n), y, vector<double>(n), out, outimag);
}


void Fft::convolve(
                   const vector<double> &xreal, const vector<double> &ximag,
                   const vector<double> &yreal, const vector<double> &yimag,
                   vector<double> &outreal, vector<double> &outimag) {

    size_t n = xreal.size();
    if (n != ximag.size() || n != yreal.size() || n != yimag.size()
        || n != outreal.size() || n != outimag.size())
        throw "Mismatched lengths";

    vector<double> xr(xreal);
    vector<double> xi(ximag);
    vector<double> yr(yreal);
    vector<double> yi(yimag);
    transform(xr, xi);
    transform(yr, yi);
    
    for (size_t i = 0; i < n; i++) {
        double temp = xr[i] * yr[i] - xi[i] * yi[i];
        xi[i] = xi[i] * yr[i] + xr[i] * yi[i];
        xr[i] = temp;
    }
    inverseTransform(xr, xi);
    
    for (size_t i = 0; i < n; i++) {  // Scaling (because this FFT implementation omits it)
        outreal[i] = xr[i] / n;
        outimag[i] = xi[i] / n;
    }
}


static size_t reverseBits(size_t x, int n) {
    size_t result = 0;
    for (int i = 0; i < n; i++, x >>= 1)
        result = (result << 1) | (x & 1U);
    return result;
}



////////////////////////////////////////////////////


//FftRealPair.hpp

/*
 * Free FFT and convolution (C++)
 *
 * Copyright (c) 2017 Project Nayuki. (MIT License)
 * https://www.nayuki.io/page/free-small-fft-in-multiple-languages
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 * - The above copyright notice and this permission notice shall be included in
 *   all copies or substantial portions of the Software.
 * - The Software is provided "as is", without warranty of any kind, express or
 *   implied, including but not limited to the warranties of merchantability,
 *   fitness for a particular purpose and noninfringement. In no event shall the
 *   authors or copyright holders be liable for any claim, damages or other
 *   liability, whether in an action of contract, tort or otherwise, arising from,
 *   out of or in connection with the Software or the use or other dealings in the
 *   Software.
 */

#pragma once

#include <vector>


namespace Fft {

    /*
     * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
     * The vector can have any length. This is a wrapper function.
     */
    void transform(std::vector<double> &real, std::vector<double> &imag);


    /*
     * Computes the inverse discrete Fourier transform (IDFT) of the given complex vector, storing the result back into the vector.
     * The vector can have any length. This is a wrapper function. This transform does not perform scaling, so the inverse is not a true inverse.
     */
    void inverseTransform(std::vector<double> &real, std::vector<double> &imag);





    /*
     * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
     * The vector's length must be a power of 2. Uses the Cooley-Tukey decimation-in-time radix-2 algorithm.
     */
    void transformRadix2(std::vector<double> &real, std::vector<double> &imag);


    /*
     * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
     * The vector can have any length. This requires the convolution function, which in turn requires the radix-2 FFT function.
     * Uses Bluestein's chirp z-transform algorithm.
     */
    void transformBluestein(std::vector<double> &real, std::vector<double> &imag);


    /*
     * Computes the circular convolution of the given real vectors. Each vector's length must be the same.
     */
    void convolve(const std::vector<double> &x, const std::vector<double> &y, std::vector<double> &out);


    /*
     * Computes the circular convolution of the given complex vectors. Each vector's length must be the same.
     */
    void convolve(
                  const std::vector<double> &xreal, const std::vector<double> &ximag,
                  const std::vector<double> &yreal, const std::vector<double> &yimag,
                  std::vector<double> &outreal, std::vector<double> &outimag);
    
}

最佳答案

如果您想从 Swift 调用该 C++ 代码,则需要通过 Objective-C++ 进行桥接。在 SO 上进行简单搜索将显示有关如何执行此操作的大量帖子。

在这种情况下,我们希望尽量减少数据复制,因为我们将 C++/Objective-C++/Swift 粘合在一起,以减少对性能的负面影响。 Swift 中 DoubleArray 将其数据存储在连续存储中,因为 Double 不是一个类。 ArraywithUnsafeMutableBufferPointer 方法似乎是一个很有前途的解决方案。不过,我会小心,并首先在一个简单的测试程序上测试这种方法。如果时间允许,我会在接下来的几天里想出一些办法。

请参阅位于 https://developer.apple.com/documentation/swift/arrayArray 文档.另一个非常有用的资源是 https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/index.html#//apple_ref/doc/uid/TP40014216-CH2-ID0 ,您可能已经在搜索此主题时看到了它。

一般要注意的一件事是,如果调整 vector 的大小,C++ 中的 vector 存储可以在内存中重新定位,例如,在这种情况下,我们将不得不制作额外的数据拷贝从 Swift 桥接到 C++ 时。然而,这段 C++ 代码似乎没有做任何会移动底层存储的事情。

2017 年 10 月 25 日更新:使用 withUnsafeMutableBufferPointer 将需要在内存中复制数组,因为创建一个直接就地使用给定的 vector 是有问题的缓冲。参见 How to cheaply assign C-style array to std::vector? .

但是,由于有一个 C 版本的库可用,这就变得小菜一碟了:

  • fft.hfft.c 添加到您的 Xcode 项目。
  • 在桥接 header 中导入 fft.h

然后你可以像这样在 Swift 中使用 C 代码:

var dReal : [Double] = [1,2,-3,4]
var dImg : [Double] = [-4,3,2,1]

dReal.withUnsafeMutableBufferPointer { (real : inout UnsafeMutableBufferPointer<Double> ) in
dImg.withUnsafeMutableBufferPointer { (img : inout UnsafeMutableBufferPointer<Double>) in
if (real.count == img.count) {
Fft_transform(real.baseAddress, img.baseAddress, real.count)
}
}
}

当然,这只是一个简单的示例。你可以让它更漂亮,添加错误处理等。

关于c++ - 在 SWIFT 中使用 C++ FFT 代码,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46904905/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com