- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个 3D 连接的 N 个对象(原子)的“字符串”(分子)(每个原子都有一个坐标)。我需要计算分子中每对原子之间的距离(参见下面的伪代码)。用 CUDA 怎么办?我应该将 2 个 3D 数组传递给内核函数吗?或者 3 个坐标数组:X[N]、Y[N]、Z[N]?谢谢。
结构原子 { 双 x、y、z;
int main()
{
//N number of atoms in a molecule
double DistanceMatrix[N][N];
double d;
atom Atoms[N];
for (int i = 0; i < N; i ++)
for (int j = 0; j < N; j++)
DistanceMatrix[i][j] = (atoms[i].x -atoms[j].x)*(atoms[i].x -atoms[j].x) +
(atoms[i].y -atoms[j].y)* (atoms[i].y -atoms[j].y) + (atoms[i].z -atoms[j].z)* (atoms[i].z -atoms[j].z;
}
最佳答案
除非您正在处理非常大的分子,否则可能没有足够的工作来让 GPU 忙碌,因此使用 CPU 的计算速度会更快。
如果您打算计算欧氏距离,则您的计算不正确。您需要勾股定理的 3D 版本。
我会使用 SoA用于存储坐标。
您想生成一个内存访问模式,其中包含尽可能多的 union 读写。为此,安排由每个 warp 中的 32 个线程生成的地址或索引尽可能彼此靠近(稍微简化)。
threadIdx
指定 block 内的线程索引,blockIdx
指定网格内的 block 索引。 blockIdx
对于 warp 中的所有线程始终相同。只有 threadIdx
在 block 中的线程内变化。要可视化 threadIdx
的 3 个维度是如何分配给线程的,请将它们视为嵌套循环,其中 x
是内部循环,z
是外循环。因此,具有相邻 x
值的线程最有可能位于同一 warp 中,并且如果 x
可被 32 整除,则只有线程共享相同的 x/32
值在同一个 warp 内。
我在下面为您的算法提供了一个完整的示例。在示例中,i
索引是从 threadIdx.x
派生的,因此,为了检查扭曲是否会生成合并的读取和写入,我将检查代码,同时插入一些i
的连续值,例如 0、1 和 2,并检查生成的索引是否也是连续的。
从 j
索引生成的地址不太重要,因为 j
是从 threadIdx.y
派生的,因此不太可能在一个扭曲(如果 threadIdx.x
可以被 32 整除,则永远不会改变)。
#include "cuda_runtime.h"
#include <iostream>
using namespace std;
const int N(20);
#define check(ans) { _check((ans), __FILE__, __LINE__); }
inline void _check(cudaError_t code, char *file, int line)
{
if (code != cudaSuccess) {
fprintf(stderr,"CUDA Error: %s %s %d\n", cudaGetErrorString(code), file, line);
exit(code);
}
}
int div_up(int a, int b) {
return ((a % b) != 0) ? (a / b + 1) : (a / b);
}
__global__ void calc_distances(double* distances,
double* atoms_x, double* atoms_y, double* atoms_z);
int main(int argc, char **argv)
{
double* atoms_x_h;
check(cudaMallocHost(&atoms_x_h, N * sizeof(double)));
double* atoms_y_h;
check(cudaMallocHost(&atoms_y_h, N * sizeof(double)));
double* atoms_z_h;
check(cudaMallocHost(&atoms_z_h, N * sizeof(double)));
for (int i(0); i < N; ++i) {
atoms_x_h[i] = i;
atoms_y_h[i] = i;
atoms_z_h[i] = i;
}
double* atoms_x_d;
check(cudaMalloc(&atoms_x_d, N * sizeof(double)));
double* atoms_y_d;
check(cudaMalloc(&atoms_y_d, N * sizeof(double)));
double* atoms_z_d;
check(cudaMalloc(&atoms_z_d, N * sizeof(double)));
check(cudaMemcpy(atoms_x_d, atoms_x_h, N * sizeof(double), cudaMemcpyHostToDevice));
check(cudaMemcpy(atoms_y_d, atoms_y_h, N * sizeof(double), cudaMemcpyHostToDevice));
check(cudaMemcpy(atoms_z_d, atoms_z_h, N * sizeof(double), cudaMemcpyHostToDevice));
double* distances_d;
check(cudaMalloc(&distances_d, N * N * sizeof(double)));
const int threads_per_block(256);
dim3 n_blocks(div_up(N, threads_per_block));
calc_distances<<<n_blocks, threads_per_block>>>(distances_d, atoms_x_d, atoms_y_d, atoms_z_d);
check(cudaPeekAtLastError());
check(cudaDeviceSynchronize());
double* distances_h;
check(cudaMallocHost(&distances_h, N * N * sizeof(double)));
check(cudaMemcpy(distances_h, distances_d, N * N * sizeof(double), cudaMemcpyDeviceToHost));
for (int i(0); i < N; ++i) {
for (int j(0); j < N; ++j) {
cout << "(" << i << "," << j << "): " << distances_h[i + N * j] << endl;
}
}
check(cudaFree(distances_d));
check(cudaFreeHost(distances_h));
check(cudaFree(atoms_x_d));
check(cudaFreeHost(atoms_x_h));
check(cudaFree(atoms_y_d));
check(cudaFreeHost(atoms_y_h));
check(cudaFree(atoms_z_d));
check(cudaFreeHost(atoms_z_h));
return 0;
}
__global__ void calc_distances(double* distances,
double* atoms_x, double* atoms_y, double* atoms_z)
{
int i(threadIdx.x + blockIdx.x * blockDim.x);
int j(threadIdx.y + blockIdx.y * blockDim.y);
if (i >= N || j >= N) {
return;
}
distances[i + N * j] =
(atoms_x[i] - atoms_x[j]) * (atoms_x[i] - atoms_x[j]) +
(atoms_y[i] - atoms_y[j]) * (atoms_y[i] - atoms_y[j]) +
(atoms_z[i] - atoms_z[j]) * (atoms_z[i] - atoms_z[j]);
}
关于c++ - Cuda,计算3d对象之间的距离矩阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21198181/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!