- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在为使用 LibSVM 的 Android 构建 NDK 应用程序。我在 XCode 中为我的 mac 构建了一个等价物(都是 C++)
我发现 Mac 可以高速准确地处理我给它的非常大的特征向量(~16800 个特征)进行训练和分类
在 Android(非常相似的代码)上,我可以成功地训练/学习 150 个功能,但是当我尝试我的全部 16800 个功能时,我会遇到以下段错误(即使它在 Mac 上运行良好)。只有分类(不过 svm_predict
。训练总是很好。
您可以看到它在 LibSVM 使用的“点”函数上失败了
0-16 23:28:41.084 30997-31028/? A/libc: Fatal signal 11 (SIGSEGV), code 1, fault addr 0xaf000000 in tid 31028 (GLThread 17147)
10-16 23:28:41.190 27393-27393/? I/DEBUG: *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
10-16 23:28:41.191 27393-27393/? I/DEBUG: Build fingerprint: 'google/hammerhead/hammerhead:5.1.1/LMY48M/2167285:user/release-keys'
10-16 23:28:41.191 27393-27393/? I/DEBUG: Revision: '11'
10-16 23:28:41.191 27393-27393/? I/DEBUG: ABI: 'arm'
10-16 23:28:41.191 27393-27393/? I/DEBUG: pid: 30997, tid: 31028, name: GLThread 17147 >>> cc.openframeworks.androidEmptyExample <<<
10-16 23:28:41.191 27393-27393/? I/DEBUG: signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0xaf000000
10-16 23:28:41.202 27393-27393/? I/DEBUG: r0 aef3e000 r1 aef5ed10 r2 00000001 r3 af000000
10-16 23:28:41.202 27393-27393/? I/DEBUG: r4 aec29eb8 r5 00000001 r6 b4b2c608 r7 12d090c0
10-16 23:28:41.202 27393-27393/? I/DEBUG: r8 12d15660 r9 b4a39400 sl 00000000 fp af37d824
10-16 23:28:41.202 27393-27393/? I/DEBUG: ip b6e417dc sp af37d810 lr a301ff78 pc a301ff04 cpsr 000f0010
10-16 23:28:41.202 27393-27393/? I/DEBUG: #00 pc 00167f04 /data/app/cc.openframeworks.androidEmptyExample-1/lib/arm/libOFAndroidApp.so (Kernel::dot(svm_node const*, svm_node const*)+192)
关于这里发生的事情有什么想法吗?
我正在使用以下参数:
mSvm.setSvmType(C_SVC);
mSvm.setKernelType(LINEAR);
mSvm.setCost(1);
mSvm.setGamma(1/16800);
mSvm.setCoef0(0);
mSvm.setCachesize(40);
mSvm.setEpsilon(0.001);
mSvm.setShrinking(false);
mSvm.setDegree(1);
mSvm.setNu(0.5);
最佳答案
根据以下行,您似乎从 LIBSVM 的点积操作中得到了错误:
10-16 23:28:41.202 27393-27393/? I/DEBUG: #00 pc 00167f04 /data/app/cc.openframeworks.androidEmptyExample-1/lib/arm/libOFAndroidApp.so (Kernel::dot(svm_node const*, svm_node const*)+192)
此例程经常被大量用户疯狂测试,因此我怀疑其中是否存在错误。
您是否 100% 确定您的指示有效?您是否有可能碰巧在 mac 版本上遇到未定义的行为?我的意思是,您提供的指针是否有可能在所有平台上始终无效,但恰好在 mac 版本上仍然有效?当您在多个平台上工作时,这种给人以正常工作错觉的错误并不少见。
关于LibSVM 在大型特征向量上失败(SEGFAULT),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33192688/
我正在考虑使用 LibSVM我正在创建所需的特征向量。 在几乎所有的示例数据中,特征都有一个顺序,例如: +1 1:3 2:1 3:5 4:2 10:8 想知道这个顺序是否重要,例如: +1 4:2
对于相同的数据集和参数,LibSVM 和 scikit-learn 的 SVM 实现的精度不同,尽管 scikit-learn also uses LibSVM internally 。 我忽略了什么
当我打开 LIBSVM 训练数据的示例文件时,我无法理解文件结构。有人可以告诉我如何制作吗? 以下是我用于预测歌曲的歌曲作者的训练数据(作为示例): 特征1:歌词中“爱”字的数量 特征2:歌词中“ f
当我打开 LIBSVM 训练数据的示例文件时,我无法理解文件结构。有人可以告诉我怎么做吗? 下面是我预测歌曲作者的训练数据(作为例子): 特征一:歌词中“爱”字的数量 特征2:歌词中“ friend
我是 python 的新手,我正在尝试使用 libsvm。我正在尝试在 grid.py 的帮助下进行交叉验证。我从数据库中获取数据,因此它不是稀疏形式。有什么办法可以按照grid.py中数据格式的要求
我有一个 LIBSVM 缩放模型(使用 svm-scale 生成),我想将它移植到 PySpark。我天真地尝试了以下方法: scaler_path = "path to model" a = Min
我不明白LIBLINEAR API中bias参数的含义。为什么在训练时由用户指定?难道它不应该只是从分离超平面到原点的距离,这是学习模型的参数吗? 这来自自述文件: struct problem {
对于 LibSVM。 在'A Practical Guide to Support Vector Classification'中建议使用m数来表示m-category属性。例如 {red, gree
是否有任何脚本可以将制表符分隔的数据文件转换为 libSVM 数据格式?例如我未标记的数据: -1 9.45 1.44 8.90 -1 8.12 7.11 8.90-1 8.11 6.12 8.78
我的数据有一个奇怪的结果,我想知道您或其他任何人是否对此有任何见解.. 我有大约 5000 个数据和大约 16000 个属性,我用每个类的 2000 个数据(我只有两个类)训练了我的 RBF svm(
我想知道为什么 libSVM 在使用或不使用概率进行预测时会给出不同的准确度结果,并且我在 this page 找到了常见问题解答其中说 Q: Why using svm-predict -b 0 a
我正在使用 LIBSVM for matlab。当我使用回归 SVM 时,它输出的概率估计是一个空矩阵,而在使用分类时此功能运行良好。这是正常行为吗,因为在 LIBSVM 自述文件中它说: -b pr
我想知道为什么 libSVM 在使用或不使用概率进行预测时会给出不同的准确度结果,并且我在 this page 找到了常见问题解答其中说 Q: Why using svm-predict -b 0 a
我已经扩展了我的训练数据并尝试进行交叉验证以获得最佳参数,但我不知道该怎么做。我尝试读取缩放后的训练数据并将它们分配给 svm_problem 变量: svm_node My_svm_node[164
我正在使用 LibSVM 进行一些多类分类。我使用 LibSVM 的 MATLAB 接口(interface)训练模型。然后,我以 C 语言可以识别的格式保存该模型。现在我想在 C 语言中使用 svm
我的目标是制作一个多类分类器,用于处理不同的文件,这些文件将标记至少两个类(或标签)。这些文件是议会倡议的,因此每个文件都将在同义词库中以至少一对值进行索引。 我在Python版本中使用“libsvm
我打算在 MATLAB 中安装 libSVM 并下载了该文件。 但是在 MATLAB 中似乎已经有了函数,svmtrain、svmpredict 等等。 MATLAB 是否已附带 LIBSVM? 最佳
我想使用从 Libsvm 模型派生的参数来预测新数据(不是在 matlab 中)。我想问模型中的支持向量(nSV,sv_coef,SVs)是否是按照模型中Label的顺序排列的?下面是使用线性核从fi
我有一个数据集,负标签值的数量是正标签值数量的 163 倍,所以我有一个不平衡的数据集。我已经尝试过了: model = svmtrain(trainLabels, trainFeatures, '-
我正在使用 libsvm 进行多元回归。我有一些缺失值的数据。例如,我有 10 个实例,每个实例有 10 个节点,每个节点有 10 个与其关联的链接。我需要使用 10 个实例来训练这 10 个节点。但
我是一名优秀的程序员,十分优秀!