- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
RBM算法是开源算法源代码可在此处获得:https://github.com/yusugomori/DeepLearning/tree/master/cpp
我尝试通过不同的方式改进 OpenACC,但顺序代码仍然更好那么你能告诉我应该做什么(部分需要改进)以获得更高的改进
#include <iostream>
#include <math.h>
#include "utils.h"
#include "RBM.h"
using namespace std;
using namespace utils;
RBM::RBM(int size, int n_v, int n_h, double **w, double *hb, double *vb) {
N = size;
n_visible = n_v;
n_hidden = n_h;
#pragma acc enter data copyin ( this)
//#pragma acc enter data copy ( W[0:n_hidden][0:n_visible] )
if(w == NULL) {
W = new double*[n_hidden];
for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible];
double a = 1.0 / n_visible;
for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
W[i][j] = uniform(-a, a);
}
}
} else {
W = w;
}
if(hb == NULL) {
hbias = new double[n_hidden];
for(int i=0; i<n_hidden; i++) hbias[i] = 0;
} else {
hbias = hb;
}
if(vb == NULL) {
vbias = new double[n_visible];
for(int i=0; i<n_visible; i++) vbias[i] = 0;
} else {
vbias = vb;
}
}
RBM::~RBM() {
#pragma acc exit data delete ( W[0:n_hidden][0:n_visible],this )
for(int i=0; i<n_hidden; i++) delete[] W[i];
delete[] W;
delete[] hbias;
delete[] vbias;
}
void RBM::contrastive_divergence(int *input, double lr, int k) {
double *ph_mean = new double[n_hidden];
int *ph_sample = new int[n_hidden];
double *nv_means = new double[n_visible];
int *nv_samples = new int[n_visible];
double *nh_means = new double[n_hidden];
int *nh_samples = new int[n_hidden];
/* CD-k */
sample_h_given_v(input, ph_mean, ph_sample);
for(int step=0; step<k; step++) {
if(step == 0) {
gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples);
} else {
gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples);
}
}
for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
// W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
W[i][j] += lr * (ph_mean[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
}
hbias[i] += lr * (ph_sample[i] - nh_means[i]) / N;
}
for(int i=0; i<n_visible; i++) {
vbias[i] += lr * (input[i] - nv_samples[i]) / N;
}
delete[] ph_mean;
delete[] ph_sample;
delete[] nv_means;
delete[] nv_samples;
delete[] nh_means;
delete[] nh_samples;
}
void RBM::sample_h_given_v(int *v0_sample, double *mean, int *sample) {
for(int i=0; i<n_hidden; i++) {
mean[i] = propup(v0_sample, W[i], hbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
void RBM::sample_v_given_h(int *h0_sample, double *mean, int *sample) {
for(int i=0; i<n_visible; i++) {
mean[i] = propdown(h0_sample, i, vbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
double RBM::propup(int *v, double *w, double b) {
double pre_sigmoid_activation = 0.0;
#pragma acc enter data present ( this )
#pragma acc data copyin(v[0:n_visible],w[0:n_visible])
#pragma acc parallel
{
#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_visible; j++) {
pre_sigmoid_activation += w[j] * v[j];
}
}
pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
double RBM::propdown(int *h, int i, double b) {
double pre_sigmoid_activation = 0.0;
#pragma acc enter data present ( this)//,W[0:n_hidden][0:n_visible] )
#pragma acc enter data copyin ( W[0:n_hidden][0:n_visible] )
#pragma acc data copyin(h[0:n_hidden])
#pragma acc parallel
{
#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
}
pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
void RBM::gibbs_hvh(int *h0_sample, double *nv_means, int *nv_samples, \
double *nh_means, int *nh_samples) {
sample_v_given_h(h0_sample, nv_means, nv_samples);
sample_h_given_v(nv_samples, nh_means, nh_samples);
}
void RBM::reconstruct(int *v, double *reconstructed_v) {
double *h = new double[n_hidden];
double pre_sigmoid_activation;
for(int i=0; i<n_hidden; i++) {
h[i] = propup(v, W[i], hbias[i]);
}
for(int i=0; i<n_visible; i++) {
pre_sigmoid_activation = 0.0;
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
pre_sigmoid_activation += vbias[i];
reconstructed_v[i] = sigmoid(pre_sigmoid_activation);
}
delete[] h;
//----------------------------------------------------The main
void test_rbm() {
srand(0);
double learning_rate = 0.1;
int training_epochs = 1000;
int k = 1;
int train_N = 6;
int test_N = 2;
int n_visible = 6;
int n_hidden = 3;
// training data
int train_X[6][6] = {
{1, 1, 1, 0, 0, 0},
{1, 0, 1, 0, 0, 0},
{1, 1, 1, 0, 0, 0},
{0, 0, 1, 1, 1, 0},
{0, 0, 1, 0, 1, 0},
{0, 0, 1, 1, 1, 0}
};
// construct RBM
RBM rbm(train_N, n_visible, n_hidden, NULL, NULL, NULL);
// train
for(int epoch=0; epoch<training_epochs; epoch++) {
for(int i=0; i<train_N; i++) {
rbm.contrastive_divergence(train_X[i], learning_rate, k);
}
}
// test data
int test_X[2][6] = {
{1, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 0}
};
double reconstructed_X[2][6];
// test
for(int i=0; i<test_N; i++) {
rbm.reconstruct(test_X[i], reconstructed_X[i]);
for(int j=0; j<n_visible; j++) {
printf("%.5f ", reconstructed_X[i][j]);
}
cout << endl;
}
}
int main() {
test_rbm();
return 0;
最佳答案
你有一些错误给了你错误的答案。我在下面更正了这些。
至于性能,您没有足够的并行性来胜过按顺序运行代码。您正在并行化的循环具有非常少的计算、使用归约并且非常小。要在主机上看到加速,您需要使用更大的尺寸(数千的长度)并且最好将并行度的组级别推到更高的循环。我试过了,但是二项式例程有一个依赖项(对 rand 的调用),它阻止了“sample_[vh]_given[_vh]”中循环的并行化。
#include <iostream>
#include <math.h>
#include "utils.h"
#include "RBM.h"
using namespace std;
using namespace utils;
RBM::RBM(int size, int n_v, int n_h, double **w, double *hb, double *vb) {
N = size;
n_visible = n_v;
n_hidden = n_h;
if(w == NULL) {
W = new double*[n_hidden];
for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible];
double a = 1.0 / n_visible;
for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
W[i][j] = uniform(-a, a);
}
}
} else {
W = w;
}
if(hb == NULL) {
hbias = new double[n_hidden];
for(int i=0; i<n_hidden; i++) hbias[i] = 0;
} else {
hbias = hb;
}
if(vb == NULL) {
vbias = new double[n_visible];
for(int i=0; i<n_visible; i++) vbias[i] = 0;
} else {
vbias = vb;
}
#pragma acc enter data copyin (this,W[0:n_hidden][0:n_visible],hbias[0:n_hidden],vbias[0:n_visible])
}
RBM::~RBM() {
#pragma acc exit data delete ( hbias[0:n_hidden],vbias[0:n_visible],W[0:n_hidden][0:n_visible],this )
for(int i=0; i<n_hidden; i++) delete[] W[i];
delete[] W;
delete[] hbias;
delete[] vbias;
}
void RBM::contrastive_divergence(int *input, double lr, int k) {
double *ph_mean = new double[n_hidden];
int *ph_sample = new int[n_hidden];
double *nv_means = new double[n_visible];
int *nv_samples = new int[n_visible];
double *nh_means = new double[n_hidden];
int *nh_samples = new int[n_hidden];
/* CD-k */
sample_h_given_v(input, ph_mean, ph_sample);
for(int step=0; step<k; step++) {
if(step == 0) {
gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples);
} else {
gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples);
}
}
for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
// W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
W[i][j] += lr * (ph_mean[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
}
hbias[i] += lr * (ph_sample[i] - nh_means[i]) / N;
}
for(int i=0; i<n_visible; i++) {
vbias[i] += lr * (input[i] - nv_samples[i]) / N;
}
#pragma acc update device(vbias[0:n_visible],hbias[0:n_hidden],W[0:n_hidden][0:n_visible])
delete[] ph_mean;
delete[] ph_sample;
delete[] nv_means;
delete[] nv_samples;
delete[] nh_means;
delete[] nh_samples;
}
void RBM::sample_h_given_v(int *v0_sample, double *mean, int *sample) {
#pragma acc data copyin(v0_sample[0:n_visible])
{
for(int i=0; i<n_hidden; i++) {
mean[i] = propup(v0_sample, W[i], hbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
}
void RBM::sample_v_given_h(int *h0_sample, double *mean, int *sample) {
#pragma acc data copyin(h0_sample[0:n_visible])
{
for(int i=0; i<n_visible; i++) {
mean[i] = propdown(h0_sample, i, vbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
}
double RBM::propup(int *v, double *w, double b) {
double pre_sigmoid_activation = 0.0;
#pragma acc parallel present(w,v)
{
#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_visible; j++) {
pre_sigmoid_activation += w[j] * v[j];
}
}
pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
double RBM::propdown(int *h, int i, double b) {
double pre_sigmoid_activation = 0.0;
#pragma acc parallel present(W,h)
{
#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
}
pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
void RBM::gibbs_hvh(int *h0_sample, double *nv_means, int *nv_samples, \
double *nh_means, int *nh_samples) {
sample_v_given_h(h0_sample, nv_means, nv_samples);
sample_h_given_v(nv_samples, nh_means, nh_samples);
}
void RBM::reconstruct(int *v, double *reconstructed_v) {
double *h = new double[n_hidden];
double pre_sigmoid_activation;
#pragma acc data copyin(v[0:n_visible])
{
for(int i=0; i<n_hidden; i++) {
h[i] = propup(v, W[i], hbias[i]);
}
for(int i=0; i<n_visible; i++) {
pre_sigmoid_activation = 0.0;
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
pre_sigmoid_activation += vbias[i];
reconstructed_v[i] = sigmoid(pre_sigmoid_activation);
}
}
delete[] h;
}
//----------------------------------------------------The main
void test_rbm() {
srand(0);
double learning_rate = 0.1;
int training_epochs = 1000;
int k = 1;
int train_N = 6;
int test_N = 2;
int n_visible = 6;
int n_hidden = 3;
// training data
int train_X[6][6] = {
{1, 1, 1, 0, 0, 0},
{1, 0, 1, 0, 0, 0},
{1, 1, 1, 0, 0, 0},
{0, 0, 1, 1, 1, 0},
{0, 0, 1, 0, 1, 0},
{0, 0, 1, 1, 1, 0}
};
// construct RBM
RBM rbm(train_N, n_visible, n_hidden, NULL, NULL, NULL);
// train
for(int epoch=0; epoch<training_epochs; epoch++) {
for(int i=0; i<train_N; i++) {
rbm.contrastive_divergence(train_X[i], learning_rate, k);
}
}
// test data
int test_X[2][6] = {
{1, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 0}
};
double reconstructed_X[2][6];
// test
for(int i=0; i<test_N; i++) {
rbm.reconstruct(test_X[i], reconstructed_X[i]);
for(int j=0; j<n_visible; j++) {
printf("%20.15f ", reconstructed_X[i][j]);
}
cout << endl;
}
}
int main() {
test_rbm();
return 0;
}
关于c++ - RBM 在代码上与 OpenACC 没有改进,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40976149/
我尝试理解[c代码 -> 汇编]代码 void node::Check( data & _data1, vector& _data2) { -> push ebp -> mov ebp,esp ->
我需要在当前表单(代码)的上下文中运行文本文件中的代码。其中一项要求是让代码创建新控件并将其添加到当前窗体。 例如,在Form1.cs中: using System.Windows.Forms; ..
我有此 C++ 代码并将其转换为 C# (.net Framework 4) 代码。有没有人给我一些关于 malloc、free 和 sprintf 方法的提示? int monate = ee; d
我的网络服务器代码有问题 #include #include #include #include #include #include #include int
给定以下 html 代码,将列表中的第三个元素(即“美丽”一词)以斜体显示的 CSS 代码是什么?当然,我可以给这个元素一个 id 或一个 class,但 html 代码必须保持不变。谢谢
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 7 年前。
我试图制作一个宏来避免重复代码和注释。 我试过这个: #define GrowOnPage(any Page, any Component) Component.Width := Page.Surfa
我正在尝试将我的旧 C++ 代码“翻译”成头条新闻所暗示的 C# 代码。问题是我是 C# 中的新手,并不是所有的东西都像 C++ 中那样。在 C++ 中这些解决方案运行良好,但在 C# 中只是不能。我
在 Windows 10 上工作,R 语言的格式化程序似乎没有在 Visual Studio Code 中完成它的工作。我试过R support for Visual Studio Code和 R-T
我正在处理一些报告(计数),我必须获取不同参数的计数。非常简单但乏味。 一个参数的示例查询: qCountsEmployee = ( "select count(*) from %s wher
最近几天我尝试从 d00m 调试网络错误。我开始用尽想法/线索,我希望其他 SO 用户拥有可能有用的宝贵经验。我希望能够提供所有相关信息,但我个人无法控制服务器环境。 整个事情始于用户注意到我们应用程
我有一个 app.js 文件,其中包含如下 dojo amd 模式代码: require(["dojo/dom", ..], function(dom){ dom.byId('someId').i
我对“-gencode”语句中的“code=sm_X”选项有点困惑。 一个例子:NVCC 编译器选项有什么作用 -gencode arch=compute_13,code=sm_13 嵌入库中? 只有
我为我的表格使用 X-editable 框架。 但是我有一些问题。 $(document).ready(function() { $('.access').editable({
我一直在通过本教程学习 flask/python http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-wo
我想将 Vim 和 EMACS 用于 CNC、G 代码和 M 代码。 Vim 或 EMACS 是否有任何语法或模式来处理这种类型的代码? 最佳答案 一些快速搜索使我找到了 this vim 和 thi
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve this
这个问题在这里已经有了答案: Enabling markdown highlighting in Vim (5 个回答) 6年前关闭。 当我在 Vim 中编辑包含 Markdown 代码的 READM
我正在 Swift3 iOS 中开发视频应用程序。基本上我必须将视频 Assets 和音频与淡入淡出效果合并为一个并将其保存到 iPhone 画廊。为此,我使用以下方法: private func d
pipeline { agent any stages { stage('Build') { steps { e
我是一名优秀的程序员,十分优秀!