gpt4 book ai didi

c++ - RBM 在代码上与 OpenACC 没有改进

转载 作者:行者123 更新时间:2023-11-28 05:23:37 25 4
gpt4 key购买 nike

RBM算法是开源算法源代码可在此处获得:https://github.com/yusugomori/DeepLearning/tree/master/cpp

我尝试通过不同的方式改进 OpenACC,但顺序代码仍然更好那么你能告诉我应该做什么(部分需要改进)以获得更高的改进

#include <iostream>
#include <math.h>
#include "utils.h"
#include "RBM.h"
using namespace std;
using namespace utils;


RBM::RBM(int size, int n_v, int n_h, double **w, double *hb, double *vb) {
N = size;
n_visible = n_v;
n_hidden = n_h;

#pragma acc enter data copyin ( this)

//#pragma acc enter data copy ( W[0:n_hidden][0:n_visible] )
if(w == NULL) {
W = new double*[n_hidden];
for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible];
double a = 1.0 / n_visible;

for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
W[i][j] = uniform(-a, a);
}
}
} else {
W = w;
}

if(hb == NULL) {
hbias = new double[n_hidden];
for(int i=0; i<n_hidden; i++) hbias[i] = 0;
} else {
hbias = hb;
}

if(vb == NULL) {
vbias = new double[n_visible];
for(int i=0; i<n_visible; i++) vbias[i] = 0;
} else {
vbias = vb;
}
}

RBM::~RBM() {

#pragma acc exit data delete ( W[0:n_hidden][0:n_visible],this )

for(int i=0; i<n_hidden; i++) delete[] W[i];
delete[] W;
delete[] hbias;
delete[] vbias;
}


void RBM::contrastive_divergence(int *input, double lr, int k) {
double *ph_mean = new double[n_hidden];
int *ph_sample = new int[n_hidden];
double *nv_means = new double[n_visible];
int *nv_samples = new int[n_visible];
double *nh_means = new double[n_hidden];
int *nh_samples = new int[n_hidden];

/* CD-k */
sample_h_given_v(input, ph_mean, ph_sample);

for(int step=0; step<k; step++) {
if(step == 0) {
gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples);
} else {
gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples);
}
}

for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
// W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
W[i][j] += lr * (ph_mean[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
}
hbias[i] += lr * (ph_sample[i] - nh_means[i]) / N;
}

for(int i=0; i<n_visible; i++) {
vbias[i] += lr * (input[i] - nv_samples[i]) / N;
}

delete[] ph_mean;
delete[] ph_sample;
delete[] nv_means;
delete[] nv_samples;
delete[] nh_means;
delete[] nh_samples;
}

void RBM::sample_h_given_v(int *v0_sample, double *mean, int *sample) {
for(int i=0; i<n_hidden; i++) {
mean[i] = propup(v0_sample, W[i], hbias[i]);
sample[i] = binomial(1, mean[i]);
}
}

void RBM::sample_v_given_h(int *h0_sample, double *mean, int *sample) {
for(int i=0; i<n_visible; i++) {
mean[i] = propdown(h0_sample, i, vbias[i]);
sample[i] = binomial(1, mean[i]);
}
}

double RBM::propup(int *v, double *w, double b) {

double pre_sigmoid_activation = 0.0;
#pragma acc enter data present ( this )
#pragma acc data copyin(v[0:n_visible],w[0:n_visible])


#pragma acc parallel
{

#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_visible; j++) {
pre_sigmoid_activation += w[j] * v[j];
}
}

pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
double RBM::propdown(int *h, int i, double b) {

double pre_sigmoid_activation = 0.0;

#pragma acc enter data present ( this)//,W[0:n_hidden][0:n_visible] )
#pragma acc enter data copyin ( W[0:n_hidden][0:n_visible] )
#pragma acc data copyin(h[0:n_hidden])

#pragma acc parallel

{
#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
}

pre_sigmoid_activation += b;

return sigmoid(pre_sigmoid_activation);

}
void RBM::gibbs_hvh(int *h0_sample, double *nv_means, int *nv_samples, \
double *nh_means, int *nh_samples) {
sample_v_given_h(h0_sample, nv_means, nv_samples);
sample_h_given_v(nv_samples, nh_means, nh_samples);
}

void RBM::reconstruct(int *v, double *reconstructed_v) {
double *h = new double[n_hidden];
double pre_sigmoid_activation;

for(int i=0; i<n_hidden; i++) {
h[i] = propup(v, W[i], hbias[i]);
}

for(int i=0; i<n_visible; i++) {
pre_sigmoid_activation = 0.0;
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
pre_sigmoid_activation += vbias[i];

reconstructed_v[i] = sigmoid(pre_sigmoid_activation);
}

delete[] h;

//----------------------------------------------------The main
void test_rbm() {

srand(0);

double learning_rate = 0.1;

int training_epochs = 1000;

int k = 1;



int train_N = 6;

int test_N = 2;

int n_visible = 6;

int n_hidden = 3;



// training data

int train_X[6][6] = {

{1, 1, 1, 0, 0, 0},

{1, 0, 1, 0, 0, 0},

{1, 1, 1, 0, 0, 0},

{0, 0, 1, 1, 1, 0},

{0, 0, 1, 0, 1, 0},

{0, 0, 1, 1, 1, 0}

};





// construct RBM

RBM rbm(train_N, n_visible, n_hidden, NULL, NULL, NULL);



// train

for(int epoch=0; epoch<training_epochs; epoch++) {

for(int i=0; i<train_N; i++) {

rbm.contrastive_divergence(train_X[i], learning_rate, k);

}

}



// test data

int test_X[2][6] = {

{1, 1, 0, 0, 0, 0},

{0, 0, 0, 1, 1, 0}

};

double reconstructed_X[2][6];





// test

for(int i=0; i<test_N; i++) {

rbm.reconstruct(test_X[i], reconstructed_X[i]);

for(int j=0; j<n_visible; j++) {

printf("%.5f ", reconstructed_X[i][j]);

}

cout << endl;

}



}







int main() {

test_rbm();

return 0;

最佳答案

你有一些错误给了你错误的答案。我在下面更正了这些。

至于性能,您没有足够的并行性来胜过按顺序运行代码。您正在并行化的循环具有非常少的计算、使用归约并且非常小。要在主机上看到加速,您需要使用更大的尺寸(数千的长度)并且最好将并行度的组级别推到更高的循环。我试过了,但是二项式例程有一个依赖项(对 rand 的调用),它阻止了“sample_[vh]_given[_vh]”中循环的并行化。

#include <iostream>
#include <math.h>
#include "utils.h"
#include "RBM.h"
using namespace std;
using namespace utils;

RBM::RBM(int size, int n_v, int n_h, double **w, double *hb, double *vb) {
N = size;
n_visible = n_v;
n_hidden = n_h;

if(w == NULL) {
W = new double*[n_hidden];
for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible];
double a = 1.0 / n_visible;

for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
W[i][j] = uniform(-a, a);
}
}
} else {
W = w;
}

if(hb == NULL) {
hbias = new double[n_hidden];
for(int i=0; i<n_hidden; i++) hbias[i] = 0;
} else {
hbias = hb;
}

if(vb == NULL) {
vbias = new double[n_visible];
for(int i=0; i<n_visible; i++) vbias[i] = 0;
} else {
vbias = vb;
}
#pragma acc enter data copyin (this,W[0:n_hidden][0:n_visible],hbias[0:n_hidden],vbias[0:n_visible])
}

RBM::~RBM() {

#pragma acc exit data delete ( hbias[0:n_hidden],vbias[0:n_visible],W[0:n_hidden][0:n_visible],this )
for(int i=0; i<n_hidden; i++) delete[] W[i];
delete[] W;
delete[] hbias;
delete[] vbias;
}

void RBM::contrastive_divergence(int *input, double lr, int k) {
double *ph_mean = new double[n_hidden];
int *ph_sample = new int[n_hidden];
double *nv_means = new double[n_visible];
int *nv_samples = new int[n_visible];
double *nh_means = new double[n_hidden];
int *nh_samples = new int[n_hidden];

/* CD-k */
sample_h_given_v(input, ph_mean, ph_sample);

for(int step=0; step<k; step++) {
if(step == 0) {
gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples);
} else {
gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples);
}
}

for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
// W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
W[i][j] += lr * (ph_mean[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
}
hbias[i] += lr * (ph_sample[i] - nh_means[i]) / N;
}

for(int i=0; i<n_visible; i++) {
vbias[i] += lr * (input[i] - nv_samples[i]) / N;
}
#pragma acc update device(vbias[0:n_visible],hbias[0:n_hidden],W[0:n_hidden][0:n_visible])

delete[] ph_mean;
delete[] ph_sample;
delete[] nv_means;
delete[] nv_samples;
delete[] nh_means;
delete[] nh_samples;
}

void RBM::sample_h_given_v(int *v0_sample, double *mean, int *sample) {

#pragma acc data copyin(v0_sample[0:n_visible])
{
for(int i=0; i<n_hidden; i++) {
mean[i] = propup(v0_sample, W[i], hbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
}

void RBM::sample_v_given_h(int *h0_sample, double *mean, int *sample) {
#pragma acc data copyin(h0_sample[0:n_visible])
{
for(int i=0; i<n_visible; i++) {
mean[i] = propdown(h0_sample, i, vbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
}

double RBM::propup(int *v, double *w, double b) {

double pre_sigmoid_activation = 0.0;
#pragma acc parallel present(w,v)
{
#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_visible; j++) {
pre_sigmoid_activation += w[j] * v[j];
}
}

pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
double RBM::propdown(int *h, int i, double b) {

double pre_sigmoid_activation = 0.0;

#pragma acc parallel present(W,h)
{
#pragma acc loop reduction(+:pre_sigmoid_activation)
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
}

pre_sigmoid_activation += b;

return sigmoid(pre_sigmoid_activation);

}
void RBM::gibbs_hvh(int *h0_sample, double *nv_means, int *nv_samples, \
double *nh_means, int *nh_samples) {
sample_v_given_h(h0_sample, nv_means, nv_samples);
sample_h_given_v(nv_samples, nh_means, nh_samples);
}

void RBM::reconstruct(int *v, double *reconstructed_v) {
double *h = new double[n_hidden];
double pre_sigmoid_activation;

#pragma acc data copyin(v[0:n_visible])
{

for(int i=0; i<n_hidden; i++) {
h[i] = propup(v, W[i], hbias[i]);
}

for(int i=0; i<n_visible; i++) {
pre_sigmoid_activation = 0.0;
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
pre_sigmoid_activation += vbias[i];

reconstructed_v[i] = sigmoid(pre_sigmoid_activation);
}
}
delete[] h;
}

//----------------------------------------------------The main
void test_rbm() {

srand(0);
double learning_rate = 0.1;
int training_epochs = 1000;
int k = 1;
int train_N = 6;
int test_N = 2;
int n_visible = 6;
int n_hidden = 3;

// training data
int train_X[6][6] = {
{1, 1, 1, 0, 0, 0},
{1, 0, 1, 0, 0, 0},
{1, 1, 1, 0, 0, 0},
{0, 0, 1, 1, 1, 0},
{0, 0, 1, 0, 1, 0},
{0, 0, 1, 1, 1, 0}
};

// construct RBM
RBM rbm(train_N, n_visible, n_hidden, NULL, NULL, NULL);

// train
for(int epoch=0; epoch<training_epochs; epoch++) {
for(int i=0; i<train_N; i++) {
rbm.contrastive_divergence(train_X[i], learning_rate, k);
}
}

// test data
int test_X[2][6] = {
{1, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 0}
};

double reconstructed_X[2][6];

// test
for(int i=0; i<test_N; i++) {
rbm.reconstruct(test_X[i], reconstructed_X[i]);
for(int j=0; j<n_visible; j++) {
printf("%20.15f ", reconstructed_X[i][j]);
}
cout << endl;
}
}

int main() {
test_rbm();
return 0;
}

关于c++ - RBM 在代码上与 OpenACC 没有改进,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40976149/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com