- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在管理一些内存的设备上建立一个容器类。
该内存是动态分配的,并在内核中的对象构建期间填充。
根据可以在内核中使用简单new []完成的文档(在Visual Studio 2012中将CUDA 8.0与计算能力5.0一起使用)。
之后,我想以主机代码访问容器内部的数据(例如用于测试所有值是否正确)。DeviceContainer
类的最低版本如下所示:
class DeviceContainer
{
public:
__device__ DeviceContainer(unsigned int size);
__host__ __device__ ~DeviceContainer();
__host__ __device__ DeviceContainer(const DeviceContainer & other);
__host__ __device__ DeviceContainer & operator=(const DeviceContainer & other);
__host__ __device__ unsigned int getSize() const { return m_sizeData; }
__device__ int * getDataDevice() const { return mp_dev_data; }
__host__ int* getDataHost() const;
private:
int * mp_dev_data;
unsigned int m_sizeData;
};
__device__ DeviceContainer::DeviceContainer(unsigned int size) :
m_sizeData(size), mp_dev_data(nullptr)
{
mp_dev_data = new int[m_sizeData];
for(unsigned int i = 0; i < m_sizeData; ++i) {
mp_dev_data[i] = i;
}
}
__host__ __device__ DeviceContainer::DeviceContainer(const DeviceContainer & other) :
m_sizeData(other.m_sizeData)
{
#ifndef __CUDA_ARCH__
cudaSafeCall( cudaMalloc((void**)&mp_dev_data, m_sizeData * sizeof(int)) );
cudaSafeCall( cudaMemcpy(mp_dev_data, other.mp_dev_data, m_sizeData * sizeof(int), cudaMemcpyDeviceToDevice) );
#else
mp_dev_data = new int[m_sizeData];
memcpy(mp_dev_data, other.mp_dev_data, m_sizeData * sizeof(int));
#endif
}
__host__ __device__ DeviceContainer::~DeviceContainer()
{
#ifndef __CUDA_ARCH__
cudaSafeCall( cudaFree(mp_dev_data) );
#else
delete[] mp_dev_data;
#endif
mp_dev_data = nullptr;
}
__host__ __device__ DeviceContainer & DeviceContainer::operator=(const DeviceContainer & other)
{
m_sizeData = other.m_sizeData;
#ifndef __CUDA_ARCH__
cudaSafeCall( cudaMalloc((void**)&mp_dev_data, m_sizeData * sizeof(int)) );
cudaSafeCall( cudaMemcpy(mp_dev_data, other.mp_dev_data, m_sizeData * sizeof(int), cudaMemcpyDeviceToDevice) );
#else
mp_dev_data = new int[m_sizeData];
memcpy(mp_dev_data, other.mp_dev_data, m_sizeData * sizeof(int));
#endif
return *this;
}
__host__ int* DeviceContainer::getDataHost() const
{
int * pDataHost = new int[m_sizeData];
cudaSafeCall( cudaMemcpy(pDataHost, mp_dev_data, m_sizeData * sizeof(int), cudaMemcpyDeviceToHost) );
return pDataHost;
}
mp_dev_data
。
__CUDA_ARCH__
用于确定我们要编译的执行路径。在主机上使用
cudaMemcpy
和
cudaFree
,在设备上我们只能使用
memcpy
和
delete[]
。
__global__ void createContainer(DeviceContainer * pContainer, unsigned int numContainer, unsigned int containerSize)
{
unsigned int offset = blockIdx.x * blockDim.x + threadIdx.x;
if(offset < numContainer)
{
pContainer[offset] = DeviceContainer(containerSize);
}
}
void main()
{
const unsigned int numContainer = 90000;
const unsigned int containerSize = 5;
DeviceContainer * pDevContainer;
cudaSafeCall( cudaMalloc((void**)&pDevContainer, numContainer * sizeof(DeviceContainer)) );
dim3 blockSize(1024, 1, 1);
dim3 gridSize((numContainer + blockSize.x - 1)/blockSize.x , 1, 1);
createContainer<<<gridSize, blockSize>>>(pDevContainer, numContainer, containerSize);
cudaCheckError();
DeviceContainer * pHostContainer = (DeviceContainer *)malloc(numContainer * sizeof(DeviceContainer));
cudaSafeCall( cudaMemcpy(pHostContainer, pDevContainer, numContainer * sizeof(DeviceContainer), cudaMemcpyDeviceToHost) );
for(unsigned int i = 0; i < numContainer; ++i)
{
const DeviceContainer & dc = pHostContainer[i];
int * pData = dc.getDataHost();
for(unsigned int j = 0; j < dc.getSize(); ++j)
{
std::cout << pData[j];
}
std::cout << std::endl;
delete[] pData;
}
free(pHostContainer);
cudaSafeCall( cudaFree(pDevContainer) );
}
malloc
进行数组创建,因为我不想为
DeviceContainer
使用默认构造函数。
getDataHost()
的
cudaMemcpy
访问容器内的数据。
cudaSafeCall
和
cudaCheckError
是简单的宏,用于评估函数oder返回的
cudaError
主动轮询最后一个错误。为了完整性:
#define cudaSafeCall(error) __cudaSafeCall(error, __FILE__, __LINE__)
#define cudaCheckError() __cudaCheckError(__FILE__, __LINE__)
inline void __cudaSafeCall(cudaError error, const char *file, const int line)
{
if (error != cudaSuccess)
{
std::cerr << "cudaSafeCall() returned:" << std::endl;
std::cerr << "\tFile: " << file << ",\nLine: " << line << " - CudaError " << error << ":" << std::endl;
std::cerr << "\t" << cudaGetErrorString(error) << std::endl;
system("PAUSE");
exit( -1 );
}
}
inline void __cudaCheckError(const char *file, const int line)
{
cudaError error = cudaDeviceSynchronize();
if (error != cudaSuccess)
{
std::cerr << "cudaCheckError() returned:" << std::endl;
std::cerr << "\tFile: " << file << ",\tLine: " << line << " - CudaError " << error << ":" << std::endl;
std::cerr << "\t" << cudaGetErrorString(error) << std::endl;
system("PAUSE");
exit( -1 );
}
}
mp_dev_data = new int[m_sizeData];
行上停止(无论在构造函数中还是在赋值运算符中),并在全局内存上报告了一些访问冲突。违反次数似乎在4到11之间是随机的,它们发生在非连续线程中,但始终在网格的上端附近(框85和86)。
numContainer
减小到10,则内核运行平稳,但是,即使
cudaMamcpy
不为0,
getDataHost()
中的
mp_dev_data
也会失败,并带有无效的参数错误。(我怀疑赋值有误,并且内存已被另一个对象删除。)
DeviceContainer
,对我而言,使其成为不可复制和不可分配也就足够了。但是,我不知道如何在内核中正确填充容器数组。也许像
DeviceContainer dc(5);
memcpy(&pContainer[offset], &dc, sizeof(DeviceContainer));
mp_dev_data
的问题。我将需要手动管理感觉很脏的内存删除。
malloc
和
free
而不是
new
和
delete
,但是结果是相同的。
最佳答案
显然答案是:我试图做的事或多或少是不可能的。
在内核中用new
或malloc
分配的内存不是放在全局内存中,而是放在主机无法访问的特殊堆内存中。
访问主机上所有内存的唯一选择是,首先在全局内存中分配一个足以容纳堆中所有元素的数组,然后编写一个将所有元素从堆复制到全局内存的内核。
访问冲突是由有限的堆大小引起的(可由cudaDeviceSetLimit(cudaLimitMallocHeapSize, size_t size)
更改)。
关于c++ - 使用主机上CUDA内核中动态分配的数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42000339/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!