gpt4 book ai didi

python - 如何在 cython 的 nogil 循环下将 numpy.ndarray 分配给临时变量?

转载 作者:行者123 更新时间:2023-11-28 04:26:48 27 4
gpt4 key购买 nike

我正在尝试实现 implicit推荐模型,并且在代码运行时计算 ~11kk 用户超过 ~100k 项目的前 5 个建议时存在问题。

我能够通过 numpy 和一些 cython sparkles(在 jupyter notebook 中)部分解决问题。使用 numpy 排序的行仍然使用单核:

%%cython -f
# cython: language_level=3
# cython: boundscheck=False
# cython: wraparound=False
# cython: linetrace=True
# cython: binding=True
# distutils: define_macros=CYTHON_TRACE_NOGIL=1
from cython.parallel import parallel, prange
import numpy as np
from tqdm import tqdm

def test(users_items=np.random.rand(11402139//1000, 134751//100)
, int N=5, show_progress=True, int num_threads=1):
# Define User count and loops indexes
cdef int users_c = users_items.shape[0], u, i
# Predefine zero 2-D C-ordered array for recommendations
cdef int[:,::1] users_recs = np.zeros((users_c, N), dtype=np.intc)
for u in tqdm(range(users_c), total=users_c, disable=not show_progress):
# numpy .dot multiplication using multiple cores
scores = np.random.rand(134751//1000, 10).dot(np.random.rand(10))
# numpy partial sort
ids_partial = np.argpartition(scores, -N)[-N:]
ids_top = ids_partial[np.argsort(scores[ids_partial])]
# Fill predefined 2-D array
for i in range(N):
users_recs[u, i] = ids_top[i]
return np.asarray(users_recs)
# Working example
tmp = test()

我对其进行了分析 - np.argpartition 消耗了 60% 的函数时间并使用了 onde 核心。我试图让它并行,因为我有一个 80 核的服务器。因此,我对一部分用户(使用多核)执行 .dot 操作,并计划通过 numpy 排序结果(使用单核)并行填充空的预定义数组,但我遇到了问题标题中的错误:

%%cython -f
# cython: language_level=3
# cython: boundscheck=False
# cython: wraparound=False
# cython: linetrace=True
# cython: binding=True
# distutils: define_macros=CYTHON_TRACE_NOGIL=1
from cython.parallel import parallel, prange
import numpy as np
from tqdm import tqdm
from math import ceil
def test(int N=10, show_progress=True, int num_threads=1):
# Define User and Item count and loops indexes
cdef int users_c = 11402139//1000, items_c = 134751//100, u, i, u_b
# Predefine zero 2-D C-ordered array for recommendations
cdef int[:,::1] users_recs = np.zeros((users_c, N), dtype=np.intc)
# Define memoryview var
cdef float[:,::1] users_items_scores_mv
progress = tqdm(total=users_c, disable=not show_progress)
# For a batch of Users
for u_b in range(5):
# Use .dot operation which use multiple cores
users_items_scores = np.random.rand(num_threads, 10).dot(np.random.rand(134751//100, 10).T)
# Create memory view to 2-D array, which I'm trying to sort row wise
users_items_scores_mv = users_items_scores
# Here it starts, try to use numpy sorting in parallel
for u in prange(num_threads, nogil=True, num_threads=num_threads):
ids_partial = np.argpartition(users_items_scores_mv[u], items_c-N)[items_c-N:]
ids_top = ids_partial[np.argsort(users_items_scores_mv[u][ids_partial])]
# Fill predefined 2-D array
for i in range(N):
users_recs[u_b + u, i] = ids_top[i]
progress.update(num_threads)
progress.close()
return np.asarray(users_recs)

得到这个(full error):

Error compiling Cython file:
------------------------------------------------------------
...
# Create memory view to 2-D array,
# which I'm trying to sort row wise
users_items_scores_mv = users_items_scores
# Here it starts, try to use numpy sorting in parallel
for u in prange(num_threads, nogil=True, num_threads=num_threads):
ids_partial = np.argpartition(users_items_scores_mv[u], items_c-N)[items_c-N:]
^
------------------------------------------------------------

/datascc/enn/.cache/ipython/cython/_cython_magic_201b296cd5a34240b4c0c6ed3e58de7c.pyx:31:12: Assignment of Python object not allowed without gil

我阅读了有关内存 View 和分配分配的信息,但没有找到适用于我的情况的示例。

最佳答案

我最终得到了自定义 C++ 函数,它通过 openmp 与 nogil 并行填充 numpy 数组。它需要用 cython 重写 numpy 的 argpartition 部分排序。算法是这样的(3-4可以循环):

  1. 定义空数组 A[i,j] 和 memory view B_mv[i,k];其中“i”是批量大小,“j”是一些列,“k”是排序后要返回的所需项目数
  2. 在 A&B 的内存上创建指针
  3. 运行一些计算并用数据填充 A
  4. 并行遍历 i-s 并填充 B
  5. 将结果转换为可读形式

解决方案包括:

topnc.h - 自定义函数实现的头文件:

/* "Copyright [2019] <Tych0n>"  [legal/copyright] */
#ifndef IMPLICIT_TOPNC_H_
#define IMPLICIT_TOPNC_H_

extern void fargsort_c(float A[], int n_row, int m_row, int m_cols, int ktop, int B[]);

#endif // IMPLICIT_TOPNC_H_

topnc.cpp - 函数体:

#include <vector>
#include <limits>
#include <algorithm>
#include <iostream>

#include "topnc.h"

struct target {int index; float value;};
bool targets_compare(target t_i, target t_j) { return (t_i.value > t_j.value); }

void fargsort_c ( float A[], int n_row, int m_row, int m_cols, int ktop, int B[] ) {
std::vector<target> targets;
for ( int j = 0; j < m_cols; j++ ) {
target c;
c.index = j;
c.value = A[(n_row*m_cols) + j];
targets.push_back(c);
}
std::partial_sort( targets.begin(), targets.begin() + ktop, targets.end(), targets_compare );
std::sort( targets.begin(), targets.begin() + ktop, targets_compare );
for ( int j = 0; j < ktop; j++ ) {
B[(m_row*ktop) + j] = targets[j].index;
}
}

ctools.pyx - 用法示例

# distutils: language = c++
# cython: language_level=3
# cython: boundscheck=False
# cython: wraparound=False
# cython: nonecheck=False
from cython.parallel import parallel, prange
import numpy as np
cimport numpy as np

cdef extern from "topnc.h":
cdef void fargsort_c ( float A[], int n_row, int m_row, int m_cols, int ktop, int B[] ) nogil

A = np.zeros((1000, 100), dtype=np.float32)
A[:] = np.random.rand(1000, 100).astype(np.float32)
cdef:
float[:,::1] A_mv = A
float* A_mv_p = &A_mv[0,0]
int[:,::1] B_mv = np.zeros((1000, 5), dtype=np.intc)
int* B_mv_p = &B_mv[0,0]
int i
for i in prange(1000, nogil=True, num_threads=10, schedule='dynamic'):
fargsort_c(A_mv_p, i, i, 100, 5, B_mv_p)
B = np.asarray(B_mv)

compile.py——编译文件;在终端中通过命令“python compile.py build_ext --inplace -f”运行它(这将生成文件 ctools.cpython-*.so,然后用于导入):

from os import path
import numpy
from setuptools import setup, Extension
from Cython.Distutils import build_ext
from Cython.Build import cythonize

ext_utils = Extension(
'ctools'
, sources=['ctools.pyx', 'topnc.cpp']
, include_dirs=[numpy.get_include()]
, extra_compile_args=['-std=c++0x', '-Os', '-fopenmp']
, extra_link_args=['-fopenmp']
, language='c++'
)

setup(
name='ctools',
setup_requires=[
'setuptools>=18.0'
, 'cython'
, 'numpy'
]
, cmdclass={'build_ext': build_ext}
, ext_modules=cythonize([ext_utils]),
)

它用于 adding “推荐所有”功能到 implicit肌萎缩侧索硬化模型。

关于python - 如何在 cython 的 nogil 循环下将 numpy.ndarray 分配给临时变量?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54112489/

27 4 0
文章推荐: c++ - 可变参数模板 : expression list treated as compound expression in functional cast error
文章推荐: c++ - 使用 C++ 将完整的以太网数据包发送到特定的 ip
文章推荐: html - 在 XSL 文件的