- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
首先,我已经阅读了C++ Binary Search Tree status access violation error with adding nodes和 Inserting in a binary search tree access violation error但我仍然无法完全实现我的二叉树。我目前在我的 get height 类中遇到访问冲突,但无法弄清楚原因。
template <typename Item, typename Key>
std::size_t BinarySearchTree<Item, Key>::height(TreeNode* node) const{
if (node == NULL)
return 0;
//Debug
if(node == NULL)
std::cout<< "node = Null"<< endl;
else
std::cout<< "node != Null"<< endl;
if(node->left == NULL)
std::cout<< "left = Null"<< endl;
else
std::cout<< "left != Null"<< endl;
if(node->right == NULL)
std::cout<< "right = Null"<< endl;
else
std::cout<< "right != Null"<< endl;
//This will go through the list adding 1 at each layer it passes through
std::size_t left = height(node->left);
std::size_t right = height(node->right);
//This will return the branch with the greatest height
return 1 + std::max(left, right);
}
这就是我向树中添加元素的方式
template <typename Item, typename Key>
void BinarySearchTree<Item, Key>::insert(const Item& value){
insert(root, value);//start at the root node
}//end insert
template <typename Item, typename Key>
void BinarySearchTree<Item, Key>::insert(TreeNode* node, const Item& value){
//if item == tree->data then stop the method
if (node == NULL){
//Populate the null leaf node
TreeNode* target = new TreeNode(value);//create a new node for the inserted parameter
target->data = value;//the data is stored in the target node
//increment the size counter
treeSize++;
}else if (value < node->data)
//If the item is less than the current nodes data then insert again
insert(node->left, value);
else
//If the item is greater than the current nodes data then insert again
insert(node->right, value);
}
我不知道我怎么会遇到访问冲突,因为我在调用左节点或右节点之前检查空指针。任何见解将不胜感激。
编辑:我还应该注意到节点的左右叶子被初始化为 NULL。
完整代码:
#pragma once
#include <cstdlib>
namespace MySpace{
template <typename Item, typename Key = Item>
class BinarySearchTree{
// private node class (only visible inside the BinarySearchTree class)
struct TreeNode {
TreeNode(const Item& data = Item()) :
data(data), left(NULL), right(NULL) { }
~TreeNode(){
delete left; delete right;
left = NULL; right = NULL;
}
Item data;//This is the object
TreeNode* left; // left child
TreeNode* right; // right child
};
public:
//==========================Constructor=============================
// creates an empty tree
BinarySearchTree(){root = NULL; treeSize = 0;}
// Postcondition: A copy of the binary search tree
BinarySearchTree(BinarySearchTree<Item, Key>& source);
//==========================Destructor================================
~BinarySearchTree(){delete root; root = NULL;}//will delete all branches recursively
//=========================Public Methods============================
// Postcondition: the current tree has been replaced with a copy of
// the source binary serch tree. The return value is the calling object
BinarySearchTree<Item, Key>& operator =(BinarySearchTree<Item, Key>& source);
// returns the number of nodes in the tree
std::size_t size() const{return treeSize;}
// returns the height of the tree
std::size_t height() const;
// returns the minimum value in the tree
const Item& min() const;
// returns the maximum value in the tree
const Item& max() const;
// inserts a copy of the given value into the tree, unless one already exists
void insert(const Item& value);
// removes an entry with the given key, if present in the tree
bool remove(const Key& key);
// returns a pointer to an entry with the given key (if it exists), or NULL
Item* search(const Key& key) const;
// if an entry with the key exists, applies the function
template <typename Function>
bool apply(const Key& key, Function f);
// applies a function to each value in the tree, via preorder traversal
template <typename Function>
void preorder(Function f);
// applies a function to each value in the tree, via inorder traversal
template <typename Function>
void inorder(Function f);
// applies a function to each value in the tree, via postorder traversal
template <typename Function>
void postorder(Function f);
//Copy the nodes of a BST
TreeNode* copy(const TreeNode *node){
//If the passed node is Null then return null
if (node == NULL)
return NULL;
Item nodeData = node->data;
TreeNode* copyNode = new TreeNode(nodeData);//create a new node with the data from the last one
copyNode->data = node->data;
copyNode->left = copy(node->left);
copyNode->right = copy(node->right);
return copyNode;
}
//=========================Accessor============================
TreeNode* getRoot(){return root;}
private:
//This is the root node for the binary tree
TreeNode* root;
std::size_t treeSize;
//Checks the size of the BST to see if it is empty or not
bool isEmpty() const{return(treeSize == 0)?true:false;}
//These methods are used for recursion
Item* search(TreeNode* node, const Key& key) const;
void insert(TreeNode* node, const Item& value);
bool remove(TreeNode* node, const Key& key);
std::size_t height(TreeNode* node) const;
const Item& min(TreeNode* node) const;
const Item& max(TreeNode* node) const;
template <typename Function>
void preorder(TreeNode* node, Function f);
template <typename Function>
void inorder(TreeNode* node, Function f);
template <typename Function>
void postorder(TreeNode* node, Function f);
};
//------------------------This is where the methods will get implemented------------------------
//Copy constructor
template <typename Item, typename Key>
BinarySearchTree<Item, Key>::BinarySearchTree(BinarySearchTree<Item, Key>& source){
treeSize = source.size();
TreeNode* tempNode = source.getRoot();
//copy(tempNode);
}
template <typename Item, typename Key>
BinarySearchTree<Item, Key>& BinarySearchTree<Item, Key>::operator =(BinarySearchTree<Item, Key>& source){
if(&source == this)
return *this;
treeSize = source.size();
TreeNode* tempNode = source.getRoot();
//copy(tempNode);
return *this;
}
template <typename Item, typename Key>
std::size_t BinarySearchTree<Item, Key>::height() const{
if(root == NULL)
std::cout<< "AAAAAAHHHHHHH!"<< endl;
else
std::cout<< "okay!"<< endl;
return height(root);//start at the root
}
template <typename Item, typename Key>
std::size_t BinarySearchTree<Item, Key>::height(TreeNode* node) const{
if (node == NULL)
return 0;
//Debug
if(node == NULL)
std::cout<< "node = Null"<< endl;
else
std::cout<< "node != Null"<< endl;
if(node->left == NULL)
std::cout<< "left = Null"<< endl;
else
std::cout<< "left != Null"<< endl;
if(node->right == NULL)
std::cout<< "right = Null"<< endl;
else
std::cout<< "right != Null"<< endl;
//This will go through the list adding 1 at each layer it passes through
std::size_t left = height(node->left);
std::size_t right = height(node->right);
//This will return the branch with the greatest height
return 1 + std::max(left, right);
}
template <typename Item, typename Key>
const Item& BinarySearchTree<Item, Key>::min() const{
return min(root);//start at the root
}
template <typename Item, typename Key>
const Item& BinarySearchTree<Item, Key>::min(TreeNode* node) const{
if(!isEmpty()){
//goes recursively until the left most leaf is found
if(node->left == NULL)
return node->data;
else
min(node->left);
}
return Item();
}
template <typename Item, typename Key>
const Item& BinarySearchTree<Item, Key>::max() const{
return max(root);//start at the root
}
template <typename Item, typename Key>
const Item& BinarySearchTree<Item, Key>::max(TreeNode* node) const{
if(!isEmpty()){
//goes recursively until the right most leaf is found
if(node->right == NULL)
return node->data;
else
max(node->right);
}
return Item();
}
template <typename Item, typename Key>
void BinarySearchTree<Item, Key>::insert(const Item& value){
insert(root, value);//start at the root node
}//end insert
template <typename Item, typename Key>
void BinarySearchTree<Item, Key>::insert(TreeNode* node, const Item& value){
//if item == tree->data then stop the method
if (node == NULL){
//Populate the null leaf node
TreeNode* target = new TreeNode(value);//create a new node for the inserted parameter
target->data = value;//the data is stored in the target node
node = target;
//increment the size counter
treeSize++;
}else if (value < node->data)
//If the item is less than the current nodes data then insert again
insert(node->left, value);
else
//If the item is greater than the current nodes data then insert again
insert(node->right, value);
}
template <typename Item, typename Key>
bool BinarySearchTree<Item, Key>::remove(const Key& key){
return remove(root, key);//default is to return false
}
template <typename Item, typename Key>
bool BinarySearchTree<Item, Key>::remove(TreeNode* node, const Key& key){
//If the tree is not empty
if(!isEmpty()){
if (key < node->data)
//If the key is less than the Item than go to the left branch
remove(node->left, key);
else if (key > node->data)
//If the key is less than the Item than go to the right branch
remove(node->right, key);
else{
//If the key is equal to the Item then...
//decrement size
treeSize--;
// There are several cases I have to deal with
// 1) a leaf node - easy
// 2) a node with 1 child - left or right
// 3) a node with 2 children - left and right
if(node->left == NULL && node->right == NULL){
delete node;//If the node was a leaf then just delete it
node = NULL;
}else if(node->left != NULL || node->right != NULL){
TreeNode* tempNode = node;
//If either branch is empty, then delete the node
delete node;
//now set the node to the non empty branch
node = (tempNode->left != NULL)?tempNode->left:tempNode->right;
}else{
//if there are two branches then make the right branch the node
TreeNode* switchNode = node->right;
//gets the left most node on the right branch
while(switchNode->left != NULL){
switchNode = switchNode->left;
}
//This puts the data into the passed node, but does not delete it!
node->data = switchNode->data;
//I don't know how many children the switch node has(Either 0 or 1), so I have to run the
//method again on the switch node to remove it properly
remove(switchNode, switchNode->data);
}
return true;//return true since the item was deleted
}//end if
}//end if not empty
return false;
}
template <typename Item, typename Key>
Item* BinarySearchTree<Item, Key>::search(const Key& key) const{
return search(root, key);
}
template <typename Item, typename Key>
Item* BinarySearchTree<Item, Key>::search(TreeNode* node, const Key& key) const{
if (node == NULL){
//If there is no node at this location return null
return NULL;
}else if (key < node->data)
//If the key is less than the Item than go to the left branch
search(node->left, key);
else if (key > node->data)
//If the key is less than the Item than go to the right branch
search(node->right, key);
else
//If the key is equal to the Item than return the item
return &node->data;
}
template <typename Item, typename Key>
template <typename Function>
bool BinarySearchTree<Item, Key>::apply(const Key& key, Function f){
Item* data = search(key);
if(data != NULL){
f(*data);//do the function on the selected item
return true;
}
return false;
}
template <typename Item, typename Key>
template <typename Function>
void BinarySearchTree<Item, Key>::preorder(Function f){
preorder(root, f);//start at the root
}
template <typename Item, typename Key = Item>
template <typename Function>
void BinarySearchTree<Item, Key>::preorder(TreeNode* node, Function f){
//If the node is not null then do the method
if(node != NULL){
//Then apply the function to the data
f(node->data);
//Do the branches last
if(node->left) preorder(node->left, f);
if(node->right) preorder(node->right, f);
}else
return;
}
template <typename Item, typename Key>
template <typename Function>
void BinarySearchTree<Item, Key>::inorder(Function f){
inorder(root, f);//start at the root
}
template <typename Item, typename Key = Item>
template <typename Function>
void BinarySearchTree<Item, Key>::inorder(TreeNode* node, Function f){
//If the node is not null then do the method
if(node != NULL){
//Do the function in between the two branches
if(node->left) inorder(node->left, f);
//Then apply the function to the data
f(node->data);
if(node->right) inorder(node->right, f);
}else
return;
}
template <typename Item, typename Key = Item>
template <typename Function>
void BinarySearchTree<Item, Key>::postorder(Function f){
postorder(root, f);//start at the root
}
template <typename Item, typename Key = Item>
template <typename Function>
void BinarySearchTree<Item, Key>::postorder(TreeNode* node, Function f){
//If the node is not null then do the method
if(node != NULL){
//Do the function in between the two branches
if(node->left) postorder(node->left, f);
if(node->right) postorder(node->right, f);
//Then apply the function to the data
f(node->data);
}else
return;
}
}
这里是main函数所在的地方
#include "BinarySearchTree.h"
#include <iostream>
#include <vector>
#include <cassert>
#include <algorithm>
#include <utility>
#include <cmath>
#include <sstream>
using namespace std;
using namespace MySpace;
using namespace rel_ops;
#define TreeType BinarySearchTree
#define BALANCED false
// #define ITERATORS
// returns the ideal height of a tree with n nodes
size_t balanced_height(size_t n) {
return (n < 2) ? n : 1 + (size_t) (log10((double) n) / log10(2.0));
}
// a simple compound data type
struct Person {
string name;
int age;
bool operator <(const Person& other) const { return (name < other.name); }
bool operator ==(const Person& other) const { return (name == other.name); }
operator string() const { return name; }
};
// operators for comparing a string to a Person (a Key to an Item)
bool operator <(const string& L, const Person& R) { return L < R.name; }
bool operator >(const string& L, const Person& R) { return L > R.name; }
bool operator ==(const string& L, const Person& R) { return L == R.name; }
bool operator !=(const string& L, const Person& R) { return L != R.name; }
bool operator <=(const string& L, const Person& R) { return L <= R.name; }
bool operator >=(const string& L, const Person& R) { return L >= R.name; }
// output operator for Person class
ostream& operator <<(ostream& out, const Person& p) { return out << p.name; }
template <typename Item, typename Key>
void test_tree(TreeType<Item, Key>, const vector<Item>&);
int main() {
const size_t NUM_VALUES = 15;
// create vectors containing the values to use
vector<int> nums(NUM_VALUES);
vector<Person> people(NUM_VALUES);
// populate them with values
for (size_t i = 0; i < NUM_VALUES; i++) {
nums[i] = people[i].age = i;
people[i].name = char('A' + i);
}
// create the empty trees
TreeType<int> t1;
TreeType<Person, string> t2;
// testing when the data type is also the key
cout << "Testing case when Item type is also the Key type... " << endl;
test_tree(t1, nums);
cout << "Passed!\n\n";
// testing when the Item type has a different Key type
cout << "Testing case with different Item and Key types... " << endl;
test_tree(t2, people);
cout << "Passed!\n\n";
// all tests passed
cout << "Nicely done!" << endl;
return EXIT_SUCCESS;
}
// simple stringstreams for testing purposes
stringstream s1, s2;
// outputs a value to the stringstream for testing
template <typename Item>
void output_value(Item& data) {
s1 << data;
}
// inserts the contents of the vector in way that yields a balanced tree
template <typename Item, typename Key>
void balanced_insert(TreeType<Item, Key>& tree, const vector<Item> values, int beg, int end) {
if (beg > end) return;
size_t mid = ceil((beg + end) / 2.0);
tree.insert(values[mid]);
if (beg != end) {
balanced_insert(tree, values, beg, mid - 1);
balanced_insert(tree, values, mid + 1, end);
}
}
// fills ss with data in preorder fashion
template <typename Item>
void vector_preorder(stringstream& ss, const vector<Item> values, int beg, int end) {
if (beg > end) return;
size_t mid = ceil((beg + end) / 2.0);
ss << values[mid];
if (beg != end) {
vector_preorder(ss, values, beg, mid - 1);
vector_preorder(ss, values, mid + 1, end);
}
}
// fills ss with data in inorder fashion
template <typename Item>
void vector_inorder(stringstream& ss, const vector<Item> values, int beg, int end) {
if (beg > end) return;
size_t mid = ceil((beg + end) / 2.0);
if (beg != end) vector_inorder(ss, values, beg, mid - 1);
ss << values[mid];
if (beg != end) vector_inorder(ss, values, mid + 1, end);
}
// fills ss with data in postorder fashion
template <typename Item>
void vector_postorder(stringstream& ss, const vector<Item> values, int beg, int end) {
if (beg > end) return;
size_t mid = ceil((beg + end) / 2.0);
if (beg != end) {
vector_postorder(ss, values, beg, mid - 1);
vector_postorder(ss, values, mid + 1, end);
}
ss << values[mid];
}
template <typename Item, typename Key>
void test_tree(TreeType<Item, Key> tree, const vector<Item>& values) {
// tree should initially be empty
assert(tree.size() == 0);
assert(tree.height() == 0);
std::cout<<"DIM TEST 1 COMPLETE!"<<endl;
// insert a single value (becomes root of tree)
tree.insert(values[0]);
// ensure that the tree has a size and height of 1...
assert(tree.size() == 1);
assert(tree.height() == 1);
std::cout<<"DIM TEST 2 COMPLETE!"<<endl;
// ensure the value appears in the tree...
assert(tree.search(values[0]));
// and that your function correctly returns a pointer to the value
assert(*tree.search(values[0]) == values[0]);
std::cout<<"SEARCH 1 COMPLETE!"<<endl;
// testing removing the root node (resulting in an empty tree)
assert(tree.remove(values[0]));
std::cout<<"REMOVE 1 COMPLETE!"<<endl;
// ensure that the tree is once again empty...
assert(tree.size() == 0);
assert(tree.height() == 0);
std::cout<<"DIM TEST 3 COMPLETE!"<<endl;
// ensure that removing a non-existent value doesn't fail (should return false)
assert(!tree.remove(values[0]));
std::cout<<"REMOVE 2 COMPLETE!"<<endl;
// ensure that the value no longer appears in the tree...
assert(!tree.search(values[0]));
std::cout<<"SEARCH 2 COMPLETE!"<<endl;
// insert all the values this time in sorted order...
for (size_t i = 0; i < values.size(); i++) {
tree.insert(values[i]);
// ensure the value appears in the tree...
assert(tree.search(values[i]));
// ensure that the size is correct...
assert(tree.size() == i + 1);
// height of tree depends on whether you're balancing as you go or not
assert(tree.height() == (BALANCED ? balanced_height(tree.size()) : tree.size()));
}
std::cout<<"INSERT 1 COMPLETE!"<<endl;
// ensure min and max work
assert(tree.min() == *min_element(values.begin(), values.end()));
assert(tree.max() == *max_element(values.begin(), values.end()));
// remove all the values, starting with the root
for (size_t i = 0; i < values.size(); i++) {
// remove the value
tree.remove(values[i]);
// ensure the value no longer appears in the tree...
assert(!tree.search(values[i]));
// ensure that the size is correct...
assert(tree.size() == values.size() - i - 1);
// height of tree depends on whether you're balancing as you go or not
assert(tree.height() == (BALANCED ? balanced_height(tree.size()) : tree.size()));
}
std::cout<<"REMOVE 3 COMPLETE!"<<endl;
// insert all the values this time in balanced order...
balanced_insert(tree, values, 0, values.size() - 1);
std::cout<<"INSERT 2 COMPLETE!"<<endl;
// make sure the size is still right...
assert(tree.size() == values.size());
// height of tree should be ceil(log2(n))
assert(tree.height() == balanced_height(tree.size()));
std::cout<<"DIM TEST 4 COMPLETE!"<<endl;
// can't insert duplicate values (size & height shouldn't increase)
// operation should simply fail silently (do nothing)
tree.insert(values[0]);
assert(tree.size() == values.size());
assert(tree.height() == balanced_height(values.size()));
// ensure min and max (still) work
assert(tree.min() == *min_element(values.begin(), values.end()));
assert(tree.max() == *max_element(values.begin(), values.end()));
std::cout<<"MIN MAX 1 COMPLETE!"<<endl;
// testing copy constructor
TreeType<Item, Key>* copy = new TreeType<Item, Key>(tree);
assert(copy->size() == tree.size());
assert(copy->height() == tree.height());
std::cout<<"DIM TEST 5 COMPLETE!"<<endl;
// original should remain unchanged after copy modification
copy->remove(values[1]);
copy->remove(values[values.size() - 2]);
assert(copy->size() == tree.size() - 2);
assert(tree.search(values[1]));
assert(tree.search(values[values.size() - 2]));
std::cout<<"REMOVE 4 COMPLETE!"<<endl;
// testing destructor
delete copy;
// the original should remain unchanged
for (size_t i = 0; i < values.size(); i++) {
assert(tree.search(values[i]));
}
// testing assignment operator
copy = new TreeType<Item, Key>;
*copy = tree;
// original should remain unchanged after copy modification
copy->remove(values[1]);
copy->remove(values[values.size() - 2]);
assert(copy->size() == tree.size() - 2);
assert(tree.search(values[1]));
assert(tree.search(values[values.size() - 2]));
// testing destructor
delete copy;
// the original should remain unchanged
for (size_t i = 0; i < values.size(); i++) {
assert(tree.search(values[i]));
}
// testing preorder traversal
s1.str(""); s2.str("");
vector_preorder(s2, values, 0, values.size() - 1);
tree.preorder(output_value<Item>);
assert(s1.str() == s2.str());
// testing inorder traversal
s1.str(""); s2.str("");
vector_inorder(s2, values, 0, values.size() - 1);
tree.inorder(output_value<Item>);
assert(s1.str() == s2.str());
// testing postorder traversal
s1.str(""); s2.str("");
vector_postorder(s2, values, 0, values.size() - 1);
tree.postorder(output_value<Item>);
assert(s1.str() == s2.str());
// testing apply
s1.str(""); s2.str("");
s2 << values[0];
tree.apply(values[0], output_value<Item>);
assert(s1.str() == s2.str());
#ifdef ITERATORS
// testing iterators (smallest-to-largest order)
typename TreeType<Item, Key>::iterator t = tree.begin();
typename vector<Item>::const_iterator v = values.begin();
while (t != tree.end()) {
assert(*t == *v);
++t;
++v;
}
assert(v == values.end());
#endif
}
最佳答案
分配和初始化后需要将节点设置为目标。
关于C++ : Binary Search Tree getHeight() access violation,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13437332/
我使用以下语句对句子进行了分块: grammar = '''
在空间索引方面更喜欢 R+-Tree 而不是 R-Tree 的主要原因是什么?据我所知,R+-Tree 避免节点重叠导致更复杂的代码、更复杂的除法算法等。 R*-tree 与 R-tree 非常相似,
我有这个通用树实现,但在编写递归树比较时遇到此错误。在第 89 行,我收到此错误:没有用于调用“Tree::operator==(Tree&, Tree&) const”的匹配函数这是我的代码: #i
除了 GIS 应用程序,还有哪些其他应用程序或库使用 R 树及其变体? 最佳答案 电脑游戏经常如此。 Here's a link to something cool . 计算机图形学——包括软件和硬件
我正在使用名为 collective.virtualtreecategories 的附加产品在 plone 中生成一棵树。但是,我不断收到奇怪的 javascript 错误,无法显示树。 在我的浏览器
我必须检查一个节点是否属于 lisp 中的一棵树,但我不知道为什么它不起作用。 这是我的代码: (defun number-of-elems (l) (cond ((null l) 0)
我对以下树的术语感到困惑,我一直在研究树,但无法区分这些树: a) 完全二叉树 b) 严格二叉树 c) 完整二叉树 请帮我区分这些树。这些树何时何地在数据结构中使用? 最佳答案 完美的树:
我在应用程序的多个页面上使用相同的 dijit.Tree View ,并且我希望将 cookie 保存为服务器名称,而不是文件夹名称。 现在我有 3 个页面和 3 个 cookie,每个页面都有自己的
我想知道是否有一个现有的单词来描述我当前正在使用的流程。我想称之为“压扁一棵树”,但我觉得一定有更好的词或短语。 输入: |--D --B | |--C | A-E | | |--G --F
我正在尝试理解 nltk.tree 模块。我很困惑为什么当打印 nltk.tree.Tree 对象时,它不打印出地址。相反,它打印出树的字符串表示形式。 我查看了 nltk.tree 中的源代码,但我
我想构建 2 个树结构。第一个树将包含节点,每个节点都有我的 Range 对象的列表: class Range { public DateTime Start { get; set; }
有人有一个带有图标和来自服务的数据源的 mat-tree 示例吗? Stackblitz 上的一个例子会很棒。 最佳答案 使用 https://stackblitz.com/edit/ng-mat-t
我意识到答案可能是存在多个有效的此类实例(例如整数;总和、乘积……的情况)。也许有人有比这更令人满意的答案? 正如 Joachim Breitner 在此答案中出色地解释的那样 How do you
我在 powerbuilder 中使用树数据窗口。这代表了树和表的混合。 我的问题是:树没有明显区分可扩展和不可扩展节点。如果一个节点不可展开,该节点前面的图标仍然是加号,如果我点击加号,树会在当前节
下午好! 我有决策树的问题。 f11<-as.factor(Z24train$f1) fit_f1 <- rpart(f11~TSU+TSL+TW+TP,data = Z24train,method=
对于处理语言,如在常规字典单词中,阅读速度更快,是基数树还是常规 b 树?有没有更快的方法,例如带有桶和散列的字典? 最佳答案 与往常一样,您需要在应用程序上下文中进行基准测试才能确定。 但是,我希望
我正在使用 Doctrine's 2 Tree-Nestedset extension使用 MySQL IndoDB 数据库。 yml 表架构如下所示: Ext\Entity\PageElement:
我正在尝试在我的光线追踪器中遍历 3D KD 树。树是正确的,但我的遍历算法似乎有问题,因为与使用蛮力方法相比,我遇到了一些错误(一些小表面积似乎被忽略了)。 注意:所讨论的光线都不平行于任何轴。 这
我正在使用nltk.tree.Tree来读取基于选区的解析树。我需要找到从树中的一个特定单词到另一个单词所需移动的节点路径。 一个简单的例子: 这是句子“saw the dogs”的解析树: (VP
我正在研究为我的应用程序组合自定义存储方案的可能性。我认为,重新发明轮子的努力是值得的,因为性能和存储效率都是主要目标,并且其上的数据和操作比 RDBMS 提供的所有内容(无更新、无删除、预定义查询集
我是一名优秀的程序员,十分优秀!