gpt4 book ai didi

c++ - 执行 SIFT 算法时出现断言错误 :opencv

转载 作者:行者123 更新时间:2023-11-28 02:53:20 26 4
gpt4 key购买 nike

我正在使用 opencv 2.4.8 和 studio 2013,出现运行时错误。我的主要代码是这样的。

#include<opencv2\core\core.hpp>
#include<opencv2\highgui\highgui.hpp>
#include<opencv2\imgproc\imgproc.hpp>
#include"SIFT.h"
#include<iostream>
#include<stdio.h>
#include<conio.h>
using namespace cv;
using namespace std;
int main()
{
cout << "hello";
Mat image = imread("abc.jpg",0);
cout << image.channels() << endl;
SIFT controller(image);
controller.DoSIFT();
waitKey(100000);

}

我的头文件代码如下

#include<opencv2\core\core.hpp>
#include<opencv2\highgui\highgui.hpp>
#include<opencv2\imgproc\imgproc.hpp>

#include<iostream>

using namespace cv;
using namespace std;

class SIFT{

private:
Mat image_orig;
Mat Scale_spaces[4][6];
Mat LOG_img[4][4];
Mat Extrema[4][2];
Mat image_temp;
Mat middle, up, down;


void BuildScaleSpace()
{

cout << "in build space" <<endl;
int i, j;
//image should be in grey scale
cout << endl<<image_temp.rows << image_temp.cols << endl;
GaussianBlur(image_temp, image_temp, cv::Size(5, 5), 0.5);
resize(image_temp, image_temp, Size(image_temp.cols * 2, image_temp.rows * 2), 0, 0, 1);
cout << image_temp.rows << image_temp.cols << endl;
Scale_spaces[0][0] =image_temp;
cout << endl << image_temp.rows << image_temp.cols << endl;
GaussianBlur(Scale_spaces[0][0], Scale_spaces[0][0], cv::Size(5, 5), 1);
double int_sigma = sqrt(2) / 2;
double sigma = int_sigma;;
double mid;
double power = 1.0;
for (i = 0; i < 4; i++)
{

if (i>0)
{
sigma = mid;
Scale_spaces[i][0] = image_temp;
resize(image_temp, Scale_spaces[i][0], Size(image_temp.cols / power, image_temp.rows / power), 0, 0, 1);
cout << endl << "after resizing" << Scale_spaces[i][0].rows << Scale_spaces[i][0].cols << endl;
}

for (j = 1; j <= 5; j++)
{
if (j == 2)
mid = sigma;
// printf(" %f ", sigma);
GaussianBlur(Scale_spaces[i][j-1], Scale_spaces[i][j], cv::Size(5, 5), sigma);
sigma = sigma*sqrt(2);

}
// printf("\n");
power = power * 2;
}




}

void ShowScaleSpace()
{
cout << "\n show scale\n\n";
namedWindow("image", CV_WINDOW_AUTOSIZE);
int i, j;
for (i = 0; i < 4; i++)
{
for (j = 0; j <= 5; j++)
{
cout << i<<" "<<j<<endl;
cout << Scale_spaces[i][j].rows<<" " << Scale_spaces[i][j].cols << endl;
imshow("image", Scale_spaces[i][j]);
cvWaitKey(700);
}
}

}

void FindLOG()
{
cout << endl << "IN LOG " << endl;
int i;
int j;
for (i = 0; i < 4; i++)
{
for (j = 1; j < 5; j++)
{
addWeighted(Scale_spaces[i][j], 1, Scale_spaces[i][j + 1], -1,0, LOG_img[i][j - 1]);
}
}

}

void FindMaxMin()
{

cout << endl << "IN findmaxmin " << endl;
int i;
int j;
int xiter, yiter;
for (i = 0; i < 4; i++)
{
for (j = 1; j < 3; j++)
{

std::cout << LOG_img[i][j].channels();
middle = LOG_img[i][j].clone();
up = LOG_img[i][j - 1].clone();
down = LOG_img[i][j + 1].clone();

for (yiter = 1; yiter < middle.rows-1; yiter++)
{
for (xiter = 1; xiter < middle.cols-1; xiter++)
{
cout << i << " " << j << " " << yiter << " " << xiter<< " "<<endl;
double currentPixel = middle.at<uchar>(yiter, xiter);
cout << "1 ";
// Check for a maximum
if (cout << "helllo 2hhukjhgkj"&&currentPixel> middle.at<uchar>(yiter, xiter + 1) &&
currentPixel> middle.at<uchar>(yiter, xiter - 1) &&
currentPixel > middle.at<uchar>(yiter + 1, xiter) &&
currentPixel > middle.at<uchar>(yiter + 1, xiter - 1) &&
currentPixel > middle.at<uchar>(yiter, xiter + 1) &&
currentPixel > middle.at<uchar>(yiter - 1, xiter) &&
currentPixel > middle.at<uchar>(yiter - 1, xiter + 1) &&
currentPixel > middle.at<uchar>(yiter - 1, xiter - 1) &&

currentPixel > up.at<uchar>(yiter, xiter) &&
currentPixel > up.at<uchar>(yiter, xiter + 1) &&
currentPixel > up.at<uchar>(yiter, xiter - 1) &&
currentPixel > up.at<uchar>(yiter + 1, xiter) &&
currentPixel > up.at<uchar>(yiter + 1, xiter - 1) &&
currentPixel > up.at<uchar>(yiter, xiter + 1) &&
currentPixel > up.at<uchar>(yiter - 1, xiter) &&
currentPixel > up.at<uchar>(yiter - 1, xiter + 1) &&
currentPixel > up.at<uchar>(yiter - 1, xiter - 1) &&

currentPixel > down.at<uchar>(yiter, xiter) &&
currentPixel > down.at<uchar>(yiter, xiter + 1) &&
currentPixel > down.at<uchar>(yiter, xiter - 1) &&
currentPixel > down.at<uchar>(yiter + 1, xiter) &&
currentPixel > down.at<uchar>(yiter + 1, xiter - 1) &&
currentPixel > down.at<uchar>(yiter, xiter + 1) &&
currentPixel > down.at<uchar>(yiter - 1, xiter) &&
currentPixel > down.at<uchar>(yiter - 1, xiter + 1) &&
currentPixel > down.at<uchar>(yiter - 1, xiter - 1)
)
{
cout << "inside, updating extrema ";
Extrema[i][j - 1].at<uchar>(xiter, yiter) = 255;
}

else if (currentPixel< middle.at<uchar>(yiter, xiter + 1) &&
currentPixel< middle.at<uchar>(yiter, xiter - 1) &&
currentPixel < middle.at<uchar>(yiter + 1, xiter) &&
currentPixel < middle.at<uchar>(yiter + 1, xiter - 1) &&
currentPixel < middle.at<uchar>(yiter, xiter + 1) &&
currentPixel < middle.at<uchar>(yiter - 1, xiter) &&
currentPixel < middle.at<uchar>(yiter - 1, xiter + 1) &&
currentPixel < middle.at<uchar>(yiter - 1, xiter - 1) &&

currentPixel < up.at<uchar>(yiter, xiter) &&
currentPixel < up.at<uchar>(yiter, xiter + 1) &&
currentPixel < up.at<uchar>(yiter, xiter - 1) &&
currentPixel < up.at<uchar>(yiter + 1, xiter) &&
currentPixel < up.at<uchar>(yiter + 1, xiter - 1) &&
currentPixel < up.at<uchar>(yiter, xiter + 1) &&
currentPixel < up.at<uchar>(yiter - 1, xiter) &&
currentPixel < up.at<uchar>(yiter - 1, xiter + 1) &&
currentPixel < up.at<uchar>(yiter - 1, xiter - 1) &&

currentPixel < down.at<uchar>(yiter, xiter) &&
currentPixel < down.at<uchar>(yiter, xiter + 1) &&
currentPixel < down.at<uchar>(yiter, xiter - 1) &&
currentPixel < down.at<uchar>(yiter + 1, xiter) &&
currentPixel < down.at<uchar>(yiter + 1, xiter - 1) &&
currentPixel < down.at<uchar>(yiter, xiter + 1) &&
currentPixel < down.at<uchar>(yiter - 1, xiter) &&
currentPixel < down.at<uchar>(yiter - 1, xiter + 1) &&
currentPixel < down.at<uchar>(yiter - 1, xiter - 1)
)
{
Extrema[i][j - 1].at<uchar>(xiter, yiter) = 255;
}

else
Extrema[i][j - 1].at<uchar>(xiter, yiter) = 0;
}




}
}
}
}



public:
SIFT(Mat Image)
{
image_orig = Image;
image_temp = Image;

}

void DoSIFT()
{

BuildScaleSpace();
//ShowScaleSpace();
FindLOG();
FindMaxMin();


}



};

构建成功,但在运行时显示以下错误。

enter image description here

错误可能在 FindMaxMin() 函数和这一行中

  currentPixel> middle.at<uchar>(yiter, xiter + 1)

但我无法纠正它。

最佳答案

抱歉,@user2396315,我没有经常访问这里。

问题是您没有使用正确大小和类型的 Mat::create() 初始化“Extrema”。您只声明了它“Mat Extrema[4][2];”

所以在 if else 之后......

Extrema[i][j - 1].at<uchar>(xiter, yiter) = ??? ;

将访问一个空的垫子“Extrema[i][j - 1]”。

你可以放

if( Extrema[i][j - 1].empty() == true )
cerr << "Fatal error" << endl ;

在它之前你会看到。

在使用之前,请始终通过 Mat::empty() 检查您的 Mat。这就是我在此 post 处“检查尺寸”的意思.我不是要检查数组的大小。

请记住,“断言失败”通常意味着您传递了一个空的 Mat 或尺寸不符合预期的 Mat。

关于c++ - 执行 SIFT 算法时出现断言错误 :opencv,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/22587103/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com