gpt4 book ai didi

c++ - Julia 集的代码总是在 CUDA C 中生成灰度图像

转载 作者:行者123 更新时间:2023-11-28 02:34:25 26 4
gpt4 key购买 nike

在在线资源的帮助下,我在 CUDA C/C++ 中编写了以下用于生成 Julia 集分形的代码。我已经尝试了几个小时,但我无法弄清楚为什么这总是生成一个灰色图像,而不是我在运行 CPU 代码时得到的图像。我是 CUDA C 和并行编程的新手,目前我指的是 CUDA by Example by Sanders and Kandrot .

这是代码的 CPU 变体,在 VS2013 中所有必要的导入都运行良好:

/*
References:
[1] http://stackoverflow.com/questions/23711681/generating-custom-color-palette-for-julia-set
[2] http://www.cs.rit.edu/~ncs/color/t_convert.html
*/

#include <stdio.h>
#include <stdlib.h>
#include <complex>
#include <string.h>
#include <IL/il.h>
#include <IL/ilu.h>
#include <time.h>

using namespace std;

#define N 1024
#define SQRT_2 1.4142
#define MAX_ITER 512

void HSVtoRGB( float *r, float *g, float *b, float h, float s, float v );
void saveImage(int width, int height, unsigned char * bitmap, complex<float> seed);
void compute_julia(complex<float> c, unsigned char * image);


int main(int argc, char **argv)
{
complex<float> c(0.285f, 0.01f);
if(argc > 2)
{
c.real(atof(argv[1]));
c.imag(atof(argv[2]));
} else
fprintf(stderr, "Usage: %s <real> <imag>\nWhere <real> and <imag> form the complex seed for the Julia set.\n", argv[0]);

ilInit();
unsigned char *image = new unsigned char[N*N*3]; //RGB image
compute_julia(c, image);
saveImage(N, N, image, c);
delete[] image;
}

void compute_julia(complex<float> c, unsigned char * image)
{
complex<float> z_old(0.0f, 0.0f);
complex<float> z_new(0.0f, 0.0f);
for(int y=0; y<N; y++)
for(int x=0; x<N; x++)
{
z_new.real(4.0f * x / (N) - 2.0f);
z_new.imag(4.0f * y / (N) - 2.0f);
int i;
for(i=0; i<MAX_ITER; i++)
{
z_old.real(z_new.real());
z_old.imag(z_new.imag());
z_new = pow(z_new, 2);
z_new += c;
if(norm(z_new) > 4.0f) break;
}
float brightness = (i<MAX_ITER) ? 1.0f : 0.0f;
float hue = (i % MAX_ITER)/float(MAX_ITER - 1);
hue = (120*sqrtf(hue) + 150);
float r, g, b;
HSVtoRGB(&r, &g, &b, hue, 1.0f, brightness);
image[(x + y*N)*3 + 0] = (unsigned char)(b*255);
image[(x + y*N)*3 + 1] = (unsigned char)(g*255);
image[(x + y*N)*3 + 2] = (unsigned char)(r*255);
}
}

void saveImage(int width, int height, unsigned char * bitmap, complex<float> seed)
{
ILuint imageID = ilGenImage();
ilBindImage(imageID);
ilTexImage(width, height, 1, 3, IL_RGB, IL_UNSIGNED_BYTE, bitmap);
//ilEnable(IL_FILE_OVERWRITE);
char imageName[256];
sprintf(imageName, "Julia %.3f + i%.3f.png", seed.real(), seed.imag());
ilSave(IL_PNG, imageName);
fprintf(stderr, "Image saved as: %s\n", imageName);
}

// r,g,b values are from 0 to 1
// h = [0,360], s = [0,1], v = [0,1]
// if s == 0, then h = -1 (undefined)
void HSVtoRGB( float *r, float *g, float *b, float h, float s, float v )
{
int i;
float f, p, q, t;
if( s == 0 ) {
// achromatic (grey)
*r = *g = *b = v;
return;
}
h /= 60; // sector 0 to 5
i = floor( h );
f = h - i; // factorial part of h
p = v * ( 1 - s );
q = v * ( 1 - s * f );
t = v * ( 1 - s * ( 1 - f ) );
switch( i ) {
case 0:
*r = v;
*g = t;
*b = p;
break;
case 1:
*r = q;
*g = v;
*b = p;
break;
case 2:
*r = p;
*g = v;
*b = t;
break;
case 3:
*r = p;
*g = q;
*b = v;
break;
case 4:
*r = t;
*g = p;
*b = v;
break;
default: // case 5:
*r = v;
*g = p;
*b = q;
break;
}
}

这是相应的 GPU 版本(请注意,它目前还很不完善,一旦我能够从中获得基本功能,我就会这样做):

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>
#include <stdlib.h>
#include <complex>
#include <string.h>
#include <IL/il.h>
#include <IL/ilu.h>
#include <time.h>
/*
References:
[1] http://stackoverflow.com/questions/23711681/generating-custom-color-palette-for-julia-set
[2] http://www.cs.rit.edu/~ncs/color/t_convert.html
*/

using namespace std;

#define N 1024
#define SQRT_2 1.4142
#define MAX_ITER 512

struct cuComplex {
float r;
float i;
__host__ __device__ cuComplex(float a, float b) : r(a), i(b) {}
__host__ __device__ float magnitude2(void) {
return r * r + i * i;
}
__host__ __device__ cuComplex operator*(const cuComplex& a) {
return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);
}
__host__ __device__ cuComplex operator+(const cuComplex& a) {
return cuComplex(r + a.r, i + a.i);
}
};

void HSVtoRGB(float *r, float *g, float *b, float h, float s, float v);
void saveImage(int width, int height, unsigned char * bitmap, cuComplex seed);
void compute_julia(complex<float> c, unsigned char * image);
__global__ void compute_julia_gpu(unsigned char* image);
__device__ void HSVtoRGB_GPU(float *r, float *g, float *b, float h, float s, float v);

int main(int argc, char **argv)
{
cuComplex c(-0.8f, 0.156f);
/*
if (argc > 2)
{
c.real(atof(argv[1]));
c.imag(atof(argv[2]));
}*/
fprintf(stderr, "Usage: %s <real> <imag>\nWhere <real> and <imag> form the complex seed for the Julia set.\n", argv[0]);

ilInit();

dim3 grid(N, N);
unsigned char *image = new unsigned char[N*N * 3]; //RGB image

size_t size = sizeof(image);

unsigned char *d_image; //RGB image

cudaMalloc((void **)&d_image, size);

compute_julia_gpu<<<grid, 1>>>(d_image);

cudaMemcpy(image, d_image, size, cudaMemcpyDeviceToHost);

saveImage(N, N, image, c);

cudaFree(d_image);
delete[] image;
}

__global__ void compute_julia_gpu(unsigned char* image) {
/*
complex<float> z_old(0.0f, 0.0f);
complex<float> z_new(0.0f, 0.0f);
complex<float> c(-0.8f, 0.156f);
*/
cuComplex z_old(0.0, 0.0);
cuComplex z_new(0.0, 0.0);
cuComplex c(-0.8f, 0.156f);
int x = blockIdx.x;
int y = blockIdx.y;
z_new.r = (4.0f * x / (N)-2.0f);
z_new.i = (4.0f * y / (N)-2.0f);
int i = 0;
for (i = 0; i<MAX_ITER; i++)
{
z_old.r = z_new.r;
z_old.i = z_new.i;
z_new = (z_new * z_new) + c;
if (z_new.magnitude2() > 4.0f) break;
}
float brightness = (i<MAX_ITER) ? 1.0f : 0.0f;
float hue = (i % MAX_ITER) / float(MAX_ITER - 1);
hue = (120 * sqrtf(hue) + 150);
float r, g, b;
HSVtoRGB_GPU(&r, &g, &b, hue, 1.0f, brightness);
image[(x + y*N) * 3 + 0] = (unsigned char)(b * 255);
image[(x + y*N) * 3 + 1] = (unsigned char)(g * 255);
image[(x + y*N) * 3 + 2] = (unsigned char)(r * 255);
}

void saveImage(int width, int height, unsigned char * bitmap, cuComplex seed)
{
ILuint imageID = ilGenImage();
ilBindImage(imageID);
ilTexImage(width, height, 1, 3, IL_RGB, IL_UNSIGNED_BYTE, bitmap);
//ilEnable(IL_FILE_OVERWRITE);
char imageName[256];
sprintf(imageName, "Julia %.3f + i%.3f.png", seed.r, seed.i);
ilSave(IL_PNG, imageName);
fprintf(stderr, "Image saved as: %s\n", imageName);
}

__device__ void HSVtoRGB_GPU(float *r, float *g, float *b, float h, float s, float v)
{
int i;
float f, p, q, t;
if (s == 0) {
// achromatic (grey)
*r = *g = *b = v;
return;
}
h /= 60; // sector 0 to 5
i = floor(h);
f = h - i; // factorial part of h
p = v * (1 - s);
q = v * (1 - s * f);
t = v * (1 - s * (1 - f));
switch (i) {
case 0:
*r = v;
*g = t;
*b = p;
break;
case 1:
*r = q;
*g = v;
*b = p;
break;
case 2:
*r = p;
*g = v;
*b = t;
break;
case 3:
*r = p;
*g = q;
*b = v;
break;
case 4:
*r = t;
*g = p;
*b = v;
break;
default: // case 5:
*r = v;
*g = p;
*b = q;
break;
}
}

感谢任何帮助,谢谢。

最佳答案

问题是你的大小变量:

#include <iostream>
#include <string.h>
using namespace std;

#define N 1024

int main() {
unsigned char *image = new unsigned char[N*N * 3]; //RGB image
size_t size = sizeof(image);
cout << size;
return 0;
}

在这种情况下,输出为 4(在 32 位架构上),因为 sizeof 返回变量类型的大小。在这种情况下,它是 unsigned char * 并且是 4 字节 长。

您可以运行 cuda-memcheck ./yourExecuteable,当您的代码对 GPU 的全局内存执行越界访问时,您将看到错误。您会看到很多错误,因为您只为 d_image 数组分配了 4 个字节的全局内存。

关于c++ - Julia 集的代码总是在 CUDA C 中生成灰度图像,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28009386/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com