- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个存储为 thrust::device_vector<int>
的线性化矩阵
本质上,它是一个维度为 nc x nv 的矩阵,存储在这个大小的线性数组中。
我想从此矩阵中获取唯一的行。如果至少有一个元素不同,则两行是唯一的。
我想使用 CUDA thrust::sort
和 thrust::unique
功能来做到这一点。我相信我需要构造一个对应于每一行的迭代器,然后使用一个按元素比较行的仿函数调用排序。但我不清楚这将如何完成。
使用跨步范围迭代器将允许我指定每一行的开始,但仿函数的实现尚不清楚。
这似乎是一个应该可以用推力解决的问题。有没有更好的方法?
最佳答案
我觉得你的方法可行。我建议对单独的行索引数组进行排序,而不是直接对矩阵进行排序,这样生成的行索引将按照矩阵行的排序顺序进行排序。
我们将创建一个带有两个行索引的排序仿函数,并使用它们索引矩阵的适当行。然后,该排序仿函数将使用逐个元素的比较对指定的两个行进行排序。
我们将对传递给 thrust::unique
的“equality”仿函数使用类似的方法(传递两个行索引)。相等仿函数然后将测试两个指示的行是否相等。我本可以像在排序仿函数中那样使用 for 循环,逐个元素地测试相等性,但为了多样化,我选择使用嵌套的 thrust::mismatch
算法。
这是一个有效的例子:
$ cat t1033.cu
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <thrust/unique.h>
#include <thrust/sequence.h>
#include <assert.h>
#include <iostream>
#include <thrust/execution_policy.h>
#include <thrust/mismatch.h>
typedef int mytype;
struct my_sort_func
{
int cols;
mytype *data;
my_sort_func(int _cols, mytype *_data) : cols(_cols),data(_data) {};
__host__ __device__
bool operator()(int r1, int r2){
for (int i = 0; i < cols; i++){
if (data[cols*r1+i] < data[cols*r2+i])
return true;
else if (data[cols*r1+i] > data[cols*r2+i])
return false;}
return false;
}
};
struct my_unique_func
{
int cols;
mytype *data;
my_unique_func(int _cols, mytype *_data) : cols(_cols),data(_data) {};
__device__
bool operator()(int r1, int r2){
thrust::pair<mytype *, mytype *> res = thrust::mismatch(thrust::seq, data+(r1*cols), data+(r1*cols)+cols, data+(r2*cols));
return (res.first == data+(r1*cols)+cols);
}
};
int main(){
const int ncols = 3;
mytype data[] = { 1, 2, 3, 1, 2, 3, 1, 3, 5, 2, 3, 4, 1, 2, 3, 1, 3, 5};
size_t dsize = sizeof(data)/sizeof(mytype);
assert ((dsize % ncols) == 0);
int nrows = dsize/ncols;
thrust::device_vector<mytype> d_data(data, data+dsize);
thrust::device_vector<int> rowidx(nrows); // reference rows by their index
thrust::sequence(rowidx.begin(), rowidx.end());
thrust::sort(rowidx.begin(), rowidx.end(), my_sort_func(ncols, thrust::raw_pointer_cast(d_data.data())));
int rsize = thrust::unique(rowidx.begin(), rowidx.end(), my_unique_func(ncols, thrust::raw_pointer_cast(d_data.data()))) - rowidx.begin();
thrust::host_vector<int> h_rowidx = rowidx;
std::cout << "Unique rows: " << std::endl;
for (int i = 0; i < rsize; i++){
for (int j = 0; j < ncols; j++) std::cout << data[h_rowidx[i]*ncols+j] << ",";
std::cout << std::endl;}
return 0;
}
$ nvcc -o t1033 t1033.cu
$ ./t1033
Unique rows:
1,2,3,
1,3,5,
2,3,4,
$
注意事项:
我怀疑如果对输入矩阵进行转置并且我们比较的是列(在转置矩阵中)而不是行,那么整体性能会有所提高。它可能为排序操作提供一些好处,我怀疑它也可能为唯一操作提供一些好处。然而,给定的代码与您在问题中的描述相符,它应该是一个很好的路线图,说明如何在列案例中执行此操作,尽管为此必须对其进行重构。
此方法实际上不会对矩阵行重新排序。为了提高效率,我想避免做大量的数据移动,因为问题陈述似乎并不依赖于它。如果您确实想要一个按排序顺序排列矩阵行的中间数据集,我仍然建议执行上述排序操作,然后使用结果在单个操作中对矩阵重新排序,使用两种可能的方法之一: 分散/聚集操作,或 thrust::permuation_iterator
结合 thrust::copy
操作。
只要聪明一点,嵌套的 thrust::mismatch
操作也可以用在排序仿函数中,代替 for 循环。
关于c++ - 来自线性化矩阵 CUDA 的唯一行,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34697937/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!