- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试估计两组点之间的 3D 旋转矩阵,我想通过计算协方差矩阵的 SVD 来实现,例如 C
,如下所示:
U,S,V = svd(C)
R = V * U^T
C
在我的例子中是 3x3
。我为此使用了 Eigen 的 JacobiSVD 模块,我最近才发现它以列优先格式存储矩阵。所以这让我感到困惑。
那么,在使用 Eigen 时,我应该这样做:V*U.transpose()
或 V.transpose()*U
?
此外,旋转是准确的,直到改变U中最小奇异值对应的列的符号,使得R的行列式为正。假设最小奇异值的索引是 minIndex
。
那么当行列式为负时,由于列主要混淆,我应该怎么做:
U.col(minIndex) *= -1 或 U.row(minIndex) *= -1
谢谢!
最佳答案
这与存储行优先或列优先矩阵无关。 svd(C)
为您提供:
U * S.asDiagonal() * V.transpose() == C
所以最接近 R
到 C
的旋转是:
R = U * V.transpose();
如果你想将 R
应用于点 p
(存储为列 vector ),那么你可以:
q = R * p;
现在您是对 R
还是它的逆 R.transpose()==V.transpose()*U
感兴趣,由您决定。
奇异值缩放 U
的列,因此您应该反转列以获得 det(U)=1
。同样,与存储布局无关。
关于c++ - Eigen 库,雅可比 SVD,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55105475/
SciPy 和 Numpy 都内置了奇异值分解 (SVD) 函数。命令基本上是 scipy.linalg.svd 和 numpy.linalg.svd。这两者有什么区别?它们中的任何一个都比另一个更好
numpy.linalg.svd 函数给出输入矩阵的完整 svd。但是我只想要第一个奇异向量。 我想知道在 numpy 中是否有任何函数用于那个或 python 中的任何其他库? 最佳答案 一种可能是
代码: import numpy from matplotlib.mlab import PCA file_name = "store1_pca_matrix.txt" ori_data = nump
我在学习SVD通过关注这个 MIT course . 矩阵构造为 C = np.matrix([[5,5],[-1,7]]) C matrix([[ 5, 5], [-1, 7]]
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 9
我想计算 SVD ,但我没有找到合适的 java 库。现在,我在 hashmap 中存储了数据,因为矩阵不适合内存,因为大小约为 400 000 X 10 000 并且大多数为 0。我尝试了 MTJ、
运行以下代码: from sklearn.decomposition import TruncatedSVD import numpy as np X = np.matrix('1 2 3 4 5;
给定一个实数矩阵 A 使得: A 是对称的 所有非对角线项都是已知且正的 所有对角线项都缺失 排名k 我想找到 A 的最佳可能完成,称为 Ac,这样(大约)rank(Ac)=k。 矩阵 A 可能很大(
我正在寻找一个执行维基百科中描述的奇异值分解的 Java 库:从矩阵 A (m X n) 得到 A = U*S*V' 其中 U 是 m x m,S 是 m x n,V 是n x n. 谁能帮帮我? 请
我正在尝试学习用于图像处理的 SVD...例如压缩。 我的方法:使用 ImageIO 获取图像作为 BufferedImage...获取 RGB 值并使用它们获取等效的灰度值(在 0-255 范围内)
我必须在 Matlab 中使用 SVD 来获得数据的简化版本。我读到函数 svds(X,k) 执行 SVD 并返回前 k 个特征值和特征向量。如果必须规范化数据,文档中没有提及。对于归一化,我指的是减
我已经使用 SVD 找到了两组点之间的旋转矩阵。我知道 R = Transpose(U) * V 但我不明白 U 和 V 代表什么以及为什么这种乘法会产生旋转矩阵。 最佳答案 由于您的问题是理论性的并
我正在尝试在名为“LSA 简介”的论文中复制一个示例: An introduction to LSA 在示例中,它们具有以下术语-文档矩阵: 然后他们应用 SVD 并得到以下结果: 试图复制这一点,我
我正在使用带有 R 的 SVD 包,我能够通过将最低奇异值替换为 0 来降低矩阵的维数。但是当我重新组合矩阵时,我仍然拥有相同数量的特征,我找不到如何有效地删除源矩阵中最无用的特征,以减少其列数。 例
我想编写一个函数,它使用 SVD 分解来求解方程组 ax=b,其中 a 是一个方阵,b 是一个值向量。 scipy 函数 scipy.linalg.svd() 应该将 a 转换为矩阵 U W V。对于
我在 R 中有一个稀疏矩阵,它显然太大了,无法在其上运行 as.matrix()(尽管它也不是 super 大)。有问题的 as.matrix() 调用位于 svd() 函数内部,所以我想知道是否有人
我正在尝试使用 bcv 包中的 SVD 插补,但所有插补值都是相同的(按列)。 这是缺少数据的数据集 http://pastebin.com/YS9qaUPs #load data dataMiss
我有这个数组 double a[][] = {{1,1,1}, {0,1,1} , { 1,0,0} ,{0,1,0},{1,0,0},{1,0,1},{1,1,1},{1,1,1},
我们现在知道A_(m x n) = U_(m x k) * S_(k x k) * V_(k x n)^T = u_(1) * s_1 * v_(1) + u_(2) * s_2 * v_(2) +
我必须对矩阵进行 SVD,但它有一些错误,在下面的示例中 U[1][1]、U[2][1] 和 U[2][0] 应为 0。 问题是,上面的例子只是一个测试,我必须使用条件不太好的大型矩阵,我该怎么做才能
我是一名优秀的程序员,十分优秀!