gpt4 book ai didi

html - 在 css 中更改图像为 180 度时

转载 作者:行者123 更新时间:2023-11-27 23:22:32 25 4
gpt4 key购买 nike

你好所以我被困在这里好几天了,我不知道该怎么办。如何在旋转 div 更改图像时消除淡入淡出效果。我猜旋转的时间不正确。

.spinner {
position: relative;
height: 300px;
width: 600px;
animation-name: rotate;
animation-duration: 3s;
animation-timing-function: linear;
animation-iteration-count: infinite;
background: url('https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcQugQCqanFP9X3akqA4XtDdm0qja8v9YxdT9OazMzCes7co2SqH');
background-size: cover;
transform-style: preserve-3d;
}

@keyframes rotate {
33.34% {
transform-style: preserve-3d;
background: url('http://media.indiatimes.in/media/content/2015/Apr/adidas-wiki_1428491439_725x725.jpg');
transform: rotateY(180deg);
top: 0;
left: 0;
background-size: cover;
position: absolute;
height: 300px;
width: 600px;
}

66.68% {
transform-style: preserve-3d;
background: url('http://slodive.com/wp-content/uploads/2013/02/popular-logos/puma-logo.jpg');
transform: rotateY(0deg);
top: 0;
left: 0;
background-size: cover;
position: absolute;
height: 300px;
width: 600px;

}

100% {
transform-style: preserve-3d;
background: url('');
transform: rotateY(180deg);
top: 0;
left: 0;
background-size: cover;
position: absolute;
height: 300px;
width: 600px;
}
}
<div class="card_container">
<div class="spinner"></div>
</div>

最佳答案

如果我理解你的要求,那么你想要这个:

诀窍在于您不希望背景图像平滑变化。为此,您需要设置 2 个具有不同属性且非常接近百分比的关键帧。

例如,第一张图片占 33.33%,第二张图片占 33.34%。

例子中需要设置

  • 背景数字 1,从 0% 到大约 1/3 = 33.3%
  • 背景数字 2,从 33.34% 变为约 2/3 = 66.6%
  • 背景数字 3,从 66.7% 到 100%

旋转必须平滑,因此您只需为每个旋转值设置 1 个关键帧。

.spinner {
position: absolute;
top: 0;
left: 0;
height: 300px;
width: 600px;
animation-name: rotate;
animation-duration: 3s;
animation-timing-function: linear;
animation-iteration-count: infinite;
background: url('https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcQugQCqanFP9X3akqA4XtDdm0qja8v9YxdT9OazMzCes7co2SqH');
background-size: cover;
transform-style: preserve-3d;
}

@keyframes rotate {
0% {
transform: rotateY(90deg);
}
0%, 33.33% {
background: url('http://media.indiatimes.in/media/content/2015/Apr/adidas-wiki_1428491439_725x725.jpg');
}
33.33% {
transform: rotateY(-90deg);
}

33.34%, 66.68% {
background: url('http://slodive.com/wp-content/uploads/2013/02/popular-logos/puma-logo.jpg');
}
66.68% {
transform: rotateY(90deg);
}
66.69%, 100% {
background: url('');
}

100% {
transform: rotateY(-90deg);

}

}
<div class="card_container">
<div class="spinner"></div>
</div>

关于html - 在 css 中更改图像为 180 度时,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40373580/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com