gpt4 book ai didi

c++ - 线程和上下文切换 C++

转载 作者:太空宇宙 更新时间:2023-11-04 15:32:45 25 4
gpt4 key购买 nike

我需要帮助来理解以下代码。它是一个用C++(BC31编译器)编写的线程工作和上下文切换的例子。

我理解为什么 PCB 存在是为了切换上下文(特别是为了保留 SS 和 SP 寄存器),我也理解通过使用这个程序可以像什么都没发生一样回到被打断的地方。关于代码,我了解宏 DISABLE_INTERRUPT 和 ENABLE_INTERRUPT 的用途(忽略代码某些敏感部分的中断)。我还了解函数 createProcess,其中为每个线程创建了本地堆栈,并且线程的标志、段和偏移量被写入其中。在函数 timerISR 中,我了解完成上下文切换的部分(SS 和 SP 的写入和读取)。

对于其余的代码,我不能说我看懂了。函数 returnNextThread()、initNewRoutine()、returnOldRoutine()、finishThread() 有什么意义?

不过,我最感兴趣的是这个程序是如何同时运行的,那里实际发生了什么,以便这三个函数在运行时交织......

这一切是如何运作的?我真的很感激一个简单的解释。

#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>
#include<dos.h>

typedef struct PCB_struct {
unsigned ss;
unsigned sp;
unsigned finished;
unsigned quant;
} PCB;

#define DISABLE_INTERRUPT asm cli
#define ENABLE_INTERRUPT asm sti
PCB *threads[4];
volatile unsigned addressOfInterruptVector = 0x08;
volatile unsigned adressOfFreePlaceForInterrupt = 0x60;
volatile unsigned numberOfInterrupts=0;
volatile PCB *activeThread;
volatile unsigned activeThreadNumber=0;
volatile unsigned numberOfFinishedThreads=0;
volatile int necessarilyContextSwitch=0;

PCB* returnNextThread() {
if(activeThreadNumber==0) {
if(threads[1]->finished==0) {
activeThreadNumber=1;
return threads[1];
}
else if(threads[2]->finished==0) {
activeThreadNumber=2;
return threads[2];
}
else if(threads[3]->finished==0) {
activeThreadNumber=3;
return threads[3];
}
else {
activeThreadNumber=0;
return threads[0];
}
}
else if(activeThreadNumber==1) {
if(threads[2]->finished==0) {
activeThreadNumber=2;
return threads[2];
}
else if(threads[3]->finished==0) {
activeThreadNumber=3;
return threads[3];
}
else {
activeThreadNumber=0;
return threads[0];
}
}
else if(activeThreadNumber==2) {
if(threads[1]->finished==0) {
activeThreadNumber=1;
return threads[1];
}
else if(threads[3]->finished==0) {
activeThreadNumber=3;
return threads[3];
}
else {
activeThreadNumber=0;
return threads[0];
}
}
else if(activeThreadNumber==3) {
if(threads[2]->finished==0) {
activeThreadNumber=2;
return threads[2];
}
else if(threads[1]->finished==0) {
activeThreadNumber=1;
return threads[1];
}
else {
activeThreadNumber=0;
return threads[0];
}
}
activeThreadNumber=0;
return threads[0];
}

unsigned tmpSs=0;
unsigned tmpSp=0;
void interrupt timerISR() {
if(!necessarilyContextSwitch) numberOfInterrupts--;
if(numberOfFinishedThreads<3 && (numberOfInterrupts==0 || necessarilyContextSwitch==1)) {
asm {
mov tmpSs,ss
mov tmpSp,sp
}
activeThread->ss=tmpSs;
activeThread->sp=tmpSp;
activeThread=returnNextThread();
tmpSs=activeThread->ss;
tmpSp=activeThread->sp;
numberOfInterrupts=activeThread->quant;
asm {
mov ss,tmpSs
mov sp,tmpSp
}
}
if(!necessarilyContextSwitch) asm int 60h;
necessarilyContextSwitch=0;
}

unsigned oldRoutineOffset, oldRoutineSegment;

void initNewRoutine() {
unsigned offsetAddress=addressOfInterruptVector*4;
unsigned segmentAddress=addressOfInterruptVector*4+2;
unsigned emptyOffset=adressOfFreePlaceForInterrupt*4;
unsigned emptySegment=adressOfFreePlaceForInterrupt*4+2;
DISABLE_INTERRUPT
asm {
push es
push ax
push di
mov ax,0
mov es,ax

mov di, word ptr segmentAddress
mov ax, word ptr es:di
mov word ptr oldRoutineSegment, ax
mov word ptr es:di, seg timerISR

mov di, word ptr offsetAddress
mov ax, word ptr es:di
mov word ptr oldRoutineOffset, ax
mov word ptr es:di, offset timerISR

mov di, word ptr emptyOffset
mov ax, word ptr oldRoutineOffset
mov word ptr es:di, ax
mov di, word ptr emptySegment
mov ax, word ptr oldRoutineSegment
mov word ptr es:di, ax

pop di
pop ax
pop es
}
ENABLE_INTERRUPT
}

void returnOldRoutine() {
unsigned offsetAddress=addressOfInterruptVector*4;
unsigned segmentAddress=addressOfInterruptVector*4+2;
DISABLE_INTERRUPT
asm {
push es
push ax
push di

mov ax,0
mov es,ax

mov di, word ptr segmentAddress
mov ax, word ptr oldRoutineSegment
mov word ptr es:di, ax

mov di, word ptr offsetAddress
mov ax, word ptr oldRoutineOffset
mov word ptr es:di, ax

pop di
pop ax
pop es
}
ENABLE_INTERRUPT
}

int finishThread() {
necessarilyContextSwitch=1;
DISABLE_INTERRUPT
activeThread->finished=1;
cout << "Thread " << activeThreadNumber << " finished." << endl;
ENABLE_INTERRUPT
timerISR();
return 0;
}

void function1() {
for(int i=0;i<30;i++) {
cout << "Execution: function 1: " << i << endl;
for(int j=0;j<10000;j++) {
for(int k=0;k<30000;k++);
}
}
finishThread();
}

void function2() {
for(int i=0;i<30;i++) {
cout << "Execution: function 2: " << i << endl;
for(int j=0;j<10000;j++) {
for(int k=0;k<30000;k++);
}
}
finishThread();
}

void function3() {
for(int i=0;i<30;i++) {
cout << "Execution: function 3: " << i << endl;
for(int j=0;j<10000;j++) {
for(int k=0;k<30000;k++);
}
}
finishThread();
}

void createProcess(PCB *block, void (*method)()) {
unsigned* st1 = new unsigned[1024];

st1[1023] = 0x200;
st1[1022] = FP_SEG(method);
st1[1021] = FP_OFF(method);

block->sp = FP_OFF(st1+1012);
block->ss = FP_SEG(st1+1012);
block->finished=0;
}

void mainThread() {

for(int i=0;i<30;i++) {
DISABLE_INTERRUPT
cout << "Main Thread: " << i << endl;
ENABLE_INTERRUPT
for(int j=0;j<30000;j++) {
for(int k=0;k<30000;k++);
}
}
}

int main() {
DISABLE_INTERRUPT
threads[1]=new PCB();
createProcess(threads[1], function1);
threads[1]->quant=20;

threads[2]=new PCB();
createProcess(threads[2], function2);
threads[2]->quant=40;

threads[3]=new PCB();
createProcess(threads[3], function3);
threads[3]->quant=20;

threads[0]=new PCB();
activeThread=threads[0];
activeThreadNumber=0;
activeThread->quant=20;
numberOfInterrupts=activeThread->quant;
ENABLE_INTERRUPT
initNewRoutine();
mainThread();
returnOldRoutine();
cout << "Main program finished." << endl;
return 0;
}

最佳答案

那是可怕的代码(老不是借口)。无论如何,timerISR 会经常触发并切换到由 returnNextThread(基本上是调度程序)确定的适当线程。

finishThread 显然通过将线程标记为已完成并强制进行上下文切换来结束线程。哪一部分不清楚?

initNewRoutinereturnOldRoutine 只是安装和卸载定时器 ISR(不幸的命名)。

关于c++ - 线程和上下文切换 C++,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45447672/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com