gpt4 book ai didi

c++ - std::memory_order_XXX 是如何工作的

转载 作者:太空宇宙 更新时间:2023-11-04 15:30:04 26 4
gpt4 key购买 nike

我不明白 std::memory_order_XXX(如 memory_order_release/memory_order_acquire ...)是如何工作的。

从一些文档中可以看出,这些内存模式具有不同的特性,但我真的很困惑它们具有相同的汇编代码,是什么决定了差异

该代码:

    static std::atomic<long> gt;
void test1() {
gt.store(1, std::memory_order_release);
gt.store(2, std::memory_order_relaxed);
gt.load(std::memory_order_acquire);
gt.load(std::memory_order_relaxed);
}

对应于:

        00000000000007a0 <_Z5test1v>:
7a0: 55 push %rbp
7a1: 48 89 e5 mov %rsp,%rbp
7a4: 48 83 ec 30 sub $0x30,%rsp

**memory_order_release:
7a8: 48 c7 45 f8 01 00 00 movq $0x1,-0x8(%rbp)
7af: 00
7b0: c7 45 e8 03 00 00 00 movl $0x3,-0x18(%rbp)
7b7: 8b 45 e8 mov -0x18(%rbp),%eax
7ba: be ff ff 00 00 mov $0xffff,%esi
7bf: 89 c7 mov %eax,%edi
7c1: e8 b1 00 00 00 callq 877 <_ZStanSt12memory_orderSt23__memory_order_modifier>
7c6: 89 45 ec mov %eax,-0x14(%rbp)
7c9: 48 8b 55 f8 mov -0x8(%rbp),%rdx
7cd: 48 8d 05 44 08 20 00 lea 0x200844(%rip),%rax # 201018 <_ZL2gt>
7d4: 48 89 10 mov %rdx,(%rax)
7d7: 0f ae f0 mfence**

**memory_order_relaxed:
7da: 48 c7 45 f0 02 00 00 movq $0x2,-0x10(%rbp)
7e1: 00
7e2: c7 45 e0 00 00 00 00 movl $0x0,-0x20(%rbp)
7e9: 8b 45 e0 mov -0x20(%rbp),%eax
7ec: be ff ff 00 00 mov $0xffff,%esi
7f1: 89 c7 mov %eax,%edi
7f3: e8 7f 00 00 00 callq 877 <_ZStanSt12memory_orderSt23__memory_order_modifier>
7f8: 89 45 e4 mov %eax,-0x1c(%rbp)
7fb: 48 8b 55 f0 mov -0x10(%rbp),%rdx
7ff: 48 8d 05 12 08 20 00 lea 0x200812(%rip),%rax # 201018 <_ZL2gt>
806: 48 89 10 mov %rdx,(%rax)
809: 0f ae f0 mfence**

**memory_order_acquire:
80c: c7 45 d8 02 00 00 00 movl $0x2,-0x28(%rbp)
813: 8b 45 d8 mov -0x28(%rbp),%eax
816: be ff ff 00 00 mov $0xffff,%esi
81b: 89 c7 mov %eax,%edi
81d: e8 55 00 00 00 callq 877 <_ZStanSt12memory_orderSt23__memory_order_modifier>
822: 89 45 dc mov %eax,-0x24(%rbp)
825: 48 8d 05 ec 07 20 00 lea 0x2007ec(%rip),%rax # 201018 <_ZL2gt>
82c: 48 8b 00 mov (%rax),%rax**

**memory_order_relaxed:
82f: c7 45 d0 00 00 00 00 movl $0x0,-0x30(%rbp)
836: 8b 45 d0 mov -0x30(%rbp),%eax
839: be ff ff 00 00 mov $0xffff,%esi
83e: 89 c7 mov %eax,%edi
840: e8 32 00 00 00 callq 877 <_ZStanSt12memory_orderSt23__memory_order_modifier>
845: 89 45 d4 mov %eax,-0x2c(%rbp)
848: 48 8d 05 c9 07 20 00 lea 0x2007c9(%rip),%rax # 201018 <_ZL2gt>
84f: 48 8b 00 mov (%rax),%rax**

852: 90 nop
853: c9 leaveq
854: c3 retq

00000000000008cc <_ZStanSt12memory_orderSt23__memory_order_modifier>:
8cc: 55 push %rbp
8cd: 48 89 e5 mov %rsp,%rbp
8d0: 89 7d fc mov %edi,-0x4(%rbp)
8d3: 89 75 f8 mov %esi,-0x8(%rbp)
8d6: 8b 55 fc mov -0x4(%rbp),%edx
8d9: 8b 45 f8 mov -0x8(%rbp),%eax
8dc: 21 d0 and %edx,%eax
8de: 5d pop %rbp
8df: c3 retq

期望不同的内存模式对汇编代码有不同的实现,但是设置不同的模式值对汇编没有影响,谁能解释一下?

最佳答案

每个内存模型设置都有其语义。编译器有义务满足这种语义,这意味着:

  1. 它不允许编译器执行某些优化,例如读取和写入的重新排序。

  2. 它指示编译器将完全相同的消息传播到硬件。如何完成取决于平台。 x86_64 本身提供了非常强大的内存模型。因此,在几乎所有情况下,无论您选择何种内存模型,您都不会看到为 x86_64 生成的汇编代码有什么不同。但是,在 RISC 架构(例如 ARM)上,您看到不同之处,因为编译器必须插入内存屏障。内存屏障的类型取决于所选的内存模型设置。

编辑:看看 JSR-133 .它非常古老并且是关于 Java 的,但它从我所知道的编译器角度提供了关于内存模型的最好解释。特别是查看不同架构的内存屏障指令表。

关于c++ - std::memory_order_XXX 是如何工作的,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56592963/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com