gpt4 book ai didi

python - [咖啡] : Check failed: ShapeEquals(proto) shape mismatch (reshape not set)

转载 作者:太空宇宙 更新时间:2023-11-04 15:16:47 24 4
gpt4 key购买 nike

我有这个错误,我试图在 Internet 上查看一下,但我什么都不清楚。

我用 Caffe 成功地训练了我的网络,准确率约为 82%。

现在我尝试通过这段代码用图像来尝试:

python python/classify.py --model_def examples/imagenet/imagenet_deploy.prototxt --pretrained_model caffe_mycaffe_train_iter_10000.caffemodel --images_dim 64,64 data/mycaffe/testingset/cat1/113.png foo --mean_file 数据/mycaffe/mycaffe_train_mean.binaryproto

是的,我的图片是 64x64,

这些是我得到的最后几行:

I0610 15:33:44.868100 28657 net.cpp:194] conv3 does not need backward computation. I0610 15:33:44.868110 28657 net.cpp:194] norm2 does not need backward computation. I0610 15:33:44.868120 28657 net.cpp:194] pool2 does not need backward computation. I0610 15:33:44.868130 28657 net.cpp:194] relu2 does not need backward computation. I0610 15:33:44.868142 28657 net.cpp:194] conv2 does not need backward computation. I0610 15:33:44.868152 28657 net.cpp:194] norm1 does not need backward computation. I0610 15:33:44.868162 28657 net.cpp:194] pool1 does not need backward computation. I0610 15:33:44.868173 28657 net.cpp:194] relu1 does not need backward computation. I0610 15:33:44.868182 28657 net.cpp:194] conv1 does not need backward computation. I0610 15:33:44.868192 28657 net.cpp:235] This network produces output fc8_pascal I0610 15:33:44.868214 28657 net.cpp:482] Collecting Learning Rate and Weight Decay. I0610 15:33:44.868238 28657 net.cpp:247] Network initialization done. I0610 15:33:44.868249 28657 net.cpp:248] Memory required for data: 3136120 F0610 15:33:45.025965 28657 blob.cpp:458] Check failed: ShapeEquals(proto) shape mismatch (reshape not set) * Check failure stack trace: * Aborted (core dumped)

我尝试不设置 --mean_file 和更多东西,但我的拍摄结束了。

这是我的 imagenet_deploy.prototxt,我修改了一些参数进行调试,但没有任何效果。

name: "MyCaffe"
input: "data"
input_dim: 10
input_dim: 3
input_dim: 64
input_dim: 64
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 64
kernel_size: 11
stride: 4
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
group: 2
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8_pascal"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_pascal"
inner_product_param {
num_output: 3
}
}

谁能给我一个线索?非常感谢。


C++ 和它们提供的分类箱也是如此:

F0610 18:06:14.975601 7906 blob.cpp:455] Check failed: ShapeEquals(proto) shape mismatch (reshape not set) * Check failure stack trace: * @ 0x7f0e3c50761c google::LogMessage::Fail() @ 0x7f0e3c507568 google::LogMessage::SendToLog() @ 0x7f0e3c506f6a google::LogMessage::Flush() @ 0x7f0e3c509f01 google::LogMessageFatal::~LogMessageFatal() @ 0x7f0e3c964a80 caffe::Blob<>::FromProto() @ 0x7f0e3c89576e caffe::Net<>::CopyTrainedLayersFrom() @ 0x7f0e3c8a10d2 caffe::Net<>::CopyTrainedLayersFrom() @ 0x406c32 Classifier::Classifier() @ 0x403d2b main @ 0x7f0e3b124ec5 (unknown) @ 0x4041ce (unknown) Aborted (core dumped)

最佳答案

我刚刚遇到了同样的错误。在我的例子中,我最后一层的输出参数不正确:切换数据集,我更改了 train.prototxt 中的类数,但在 test.prototxt(或 deploy.prototxt)中没有这样做。纠正这个错误解决了我的问题。

关于python - [咖啡] : Check failed: ShapeEquals(proto) shape mismatch (reshape not set),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30761433/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com