gpt4 book ai didi

c++ - 尝试使用 CL_MEM_USE_HOST_PTR 在 OpenCL 1.1 中创建一个简单的复制/粘贴值,为什么它不起作用?

转载 作者:太空宇宙 更新时间:2023-11-04 12:56:29 25 4
gpt4 key购买 nike

我对嵌入式和 OpenCL 很陌生,我目前正在尝试开发一个示例代码以在支持 OpenCL 1.1 EP 的 i.MX6q 板上执行。

我不得不从头开始,所以我遵循了these tutorials , the OpenCL 1.1 Reference pages还有this OpenCL example制作我的第一个 OpenCL 实现/应用程序。

基本上我想做的是开发一个“性能测试”在板上运行。它包含两个 int 数组(输入和输出),用随机值填充第一个数组并使用 OpenCL 工作项将其粘贴到输出数组中。

我对 clEnqueue(Read/Write)Buffer 函数和 clCreateBuffer 标志(尤其是 CL_MEM_USE_HOST_PTR)感到很困惑,所以我决定看一看并用它来练习。

我的代码可以正确编译和运行,但是当我读取输出数组值时,它们仍然为 0。

这是我的代码(C++):

void    buffer_copy(char* kernelfile)
{
cl_platform_id platform_id;
cl_device_id device_id;
cl_context context;
cl_command_queue cmd_queue;
cl_program program;

// Retrieving all the OpenCL data needed
// to start the performance test
platform_id = get_platform();
device_id = get_device(platform_id);
context = get_context(platform_id, device_id);
cmd_queue = get_command_queue(context, device_id);
program = get_program(context, kernelfile);

cl_mem buffer_input, buffer_output;
size_t buffer_width = 640, buffer_height = 480;
size_t buffer_size = buffer_width * buffer_height;
cl_kernel kernel;
cl_int err = 0;
char* options = "-Werror -cl-std=CL1.1";

int data_input[buffer_size];
int data_output[buffer_size];

// Assigning random values in the data_input array and
// initializing the data_output array to zero-values
srand(time(NULL));
for (size_t index = 0; index < buffer_size; ++index)
{
data_input[index] = rand();
data_output[index] = 0;
}

// Creating OpenCL buffers
buffer_input = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, buffer_size * sizeof(int), data_input, &err);
assert(err == CL_SUCCESS);
buffer_output = clCreateBuffer(context, CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, buffer_size * sizeof(int), data_output, &err);
assert(err == CL_SUCCESS);

err = clBuildProgram(program, 1, &device_id, options, NULL, NULL);
assert(err == CL_SUCCESS);
kernel = clCreateKernel(program, "buffer_copy", &err);
assert(err == CL_SUCCESS);

clSetKernelArg(kernel, 0, sizeof(cl_mem), &buffer_input);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &buffer_output);

size_t device_max_work_group_size;
size_t global_work_size, local_work_size;
size_t preferred_work_group_size_multiple;

cl_ulong global_mem_size, max_mem_alloc_size;
clGetDeviceInfo(device_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(cl_ulong), &global_mem_size, NULL);
clGetDeviceInfo(device_id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &max_mem_alloc_size, NULL);
clGetDeviceInfo(device_id, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &device_max_work_group_size, NULL);
std::cout << "Global device memory size: " << global_mem_size << " bytes" << std::endl;
std::cout << "Device max memory allocation size: " << max_mem_alloc_size << " bytes" << std::endl;
std::cout << "Device max work group size: " << device_max_work_group_size << std::endl;

clGetKernelWorkGroupInfo(kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &global_work_size, NULL);
std::cout << "global_work_size value: " << global_work_size << std::endl;

clGetKernelWorkGroupInfo(kernel, device_id, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, sizeof(size_t), &preferred_work_group_size_multiple, NULL);
local_work_size = global_work_size / preferred_work_group_size_multiple;
std::cout << "local_work_size value: " << local_work_size << std::endl;

cl_event events[2];
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, &global_work_size, &local_work_size, 0, 0, &events[0]);
assert (err == CL_SUCCESS);
err = clEnqueueReadBuffer(cmd_queue, buffer_output, CL_TRUE, 0, buffer_size * sizeof(int), data_output, 0, NULL, &events[1]);
assert (err == CL_SUCCESS);
err = clWaitForEvents(2, events);
assert (err == CL_SUCCESS);

for (size_t index = 0; index < buffer_size; ++index)
{
if (data_input[index] != data_output[index])
{
std::cerr << "Error, values differ (at index " << index << ")." << std::endl;
break;
}
else
{
//std::cout << "data_input[index] =\t" << data_input[index] << std::endl;
//std::cout << "data_output[index] =\t" << data_output[index] << std::endl;
}
}

cl_ulong time_start, time_end;
double total_time;
clGetEventProfilingInfo(events[0], CL_PROFILING_COMMAND_START, sizeof(time_start), &time_start, NULL);
clGetEventProfilingInfo(events[1], CL_PROFILING_COMMAND_END, sizeof(time_end), &time_end, NULL);
total_time = time_end - time_start;
std::cout << "Execution time in milliseconds: " << (total_time / 1000000.0) << " ms" << std::endl;

clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseMemObject(buffer_input);
clReleaseMemObject(buffer_output);
clReleaseCommandQueue(cmd_queue);
clReleaseContext(context);
}

这是我的 OpenCL 内核:

__kernel void   buffer_copy(__global int* input, __global int* output)
{
int id = get_global_id(0);

output[id] = input[id];
}

现在我只是想让它工作,而不是优化它。而且我认为我到处都遗漏了要点,但我无法捕获它们。在我看来,我混淆了 clCreateBuffer 标志。

你们能启发我并帮助我解决这个问题吗?


编辑:更新代码 + 新信息!

似乎值粘贴得很好,但仅根据内核工作组大小:CL_DEVICE_MAX_WORK_GROUP_SIZE 返回 1024,CL_KERNEL_WORK_GROUP_SIZE 也返回 1024(这也很奇怪)。所以我的数组的前 1024 个整数被很好地复制/粘贴,但之后它就不再工作了。为了验证这一点,我将 global_work_group_size 手动设置为 32,再次运行我的程序,然后正确粘贴了前 32 个整数。我真的不明白这是怎么回事。

最佳答案

我想我能够让它同时适用于我的笔记本电脑和 i.MX6q 板。

这是有效的代码:

void    buffer_copy(char* kernelfile)
{
cl_platform_id platform_id;
cl_device_id device_id;
cl_context context;
cl_command_queue cmd_queue;
cl_program program;

// Retrieving all the OpenCL data needed
// to start the performance test
platform_id = get_platform();
device_id = get_device(platform_id);
context = get_context(platform_id, device_id);
cmd_queue = get_command_queue(context, device_id);
program = get_program(context, kernelfile);

cl_mem buffer_input, buffer_output;
size_t buffer_width = 640, buffer_height = 480;
size_t buffer_size = buffer_width * buffer_height;
cl_kernel kernel;
cl_int err = 0;
char* options = "-Werror -cl-std=CL1.1";

int data_input[buffer_size];
int data_output[buffer_size];

// Assigning random values in the data_input array and
// initializing the data_output array to zero-values
srand(time(NULL));
for (size_t index = 0; index < buffer_size; ++index)
{
data_input[index] = rand();
data_output[index] = 0;
}

// Creating OpenCL buffers
buffer_input = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, buffer_size * sizeof(int), data_input, &err);
assert(err == CL_SUCCESS);
buffer_output = clCreateBuffer(context, CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, buffer_size * sizeof(int), data_output, &err);
assert(err == CL_SUCCESS);

err = clBuildProgram(program, 1, &device_id, options, NULL, NULL);
assert(err == CL_SUCCESS);
kernel = clCreateKernel(program, "buffer_copy", &err);
assert(err == CL_SUCCESS);

clSetKernelArg(kernel, 0, sizeof(cl_mem), &buffer_input);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &buffer_output);

cl_ulong global_mem_size = 0, max_mem_alloc_size = 0;
size_t device_max_work_group_size = 0;
size_t kernel_work_group_size = 0;
size_t preferred_work_group_size_multiple = 0;
clGetDeviceInfo(device_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(cl_ulong), &global_mem_size, NULL);
clGetDeviceInfo(device_id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &max_mem_alloc_size, NULL);
clGetDeviceInfo(device_id, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &device_max_work_group_size, NULL);
clGetKernelWorkGroupInfo(kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &kernel_work_group_size, NULL);
clGetKernelWorkGroupInfo(kernel, device_id, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, sizeof(size_t), &preferred_work_group_size_multiple, NULL);
std::cout << "CL_DEVICE_GLOBAL_MEM_SIZE : " << global_mem_size << " bytes" << std::endl;
std::cout << "CL_DEVICE_MAX_MEM_ALLOC_SIZE : " << max_mem_alloc_size << " bytes" << std::endl;
std::cout << "CL_DEVICE_MAX_WORK_GROUP_SIZE : " << device_max_work_group_size << std::endl;
std::cout << "CL_KERNEL_WORK_GROUP_SIZE : " << kernel_work_group_size << std::endl;
std::cout << "CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE : " << preferred_work_group_size_multiple << std::endl;

cl_event events[2];
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, &buffer_size, &kernel_work_group_size, 0, NULL, &events[0]);
assert (err == CL_SUCCESS);
err = clEnqueueReadBuffer(cmd_queue, buffer_output, CL_TRUE, 0, buffer_size * sizeof(int), data_output, 1, &events[0], &events[1]);
assert (err == CL_SUCCESS);
err = clWaitForEvents(2, events);
assert (err == CL_SUCCESS);

for (size_t index = 0; index < buffer_size; ++index)
{
if (data_input[index] != data_output[index])
{
std::cerr << "Error, values differ (at index " << index << ")." << std::endl;
break;
}
}

cl_ulong time_start, time_end;
double total_time;

clGetEventProfilingInfo(events[0], CL_PROFILING_COMMAND_START, sizeof(time_start), &time_start, NULL);
clGetEventProfilingInfo(events[0], CL_PROFILING_COMMAND_END, sizeof(time_end), &time_end, NULL);
total_time = time_end - time_start;
std::cout << "clEnqueueNDRangeKernel execution time in milliseconds: " << (total_time / 1000000.0) << " ms" << std::endl;
clGetEventProfilingInfo(events[1], CL_PROFILING_COMMAND_START, sizeof(time_start), &time_start, NULL);
clGetEventProfilingInfo(events[1], CL_PROFILING_COMMAND_END, sizeof(time_end), &time_end, NULL);
total_time = time_end - time_start;
std::cout << "clEnqueueReadBuffer execution time in milliseconds: " << (total_time / 1000000.0) << " ms" << std::endl;

clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseMemObject(buffer_input);
clReleaseMemObject(buffer_output);
clReleaseCommandQueue(cmd_queue);
clReleaseContext(context);
}

如您所见,我只是使用 OpenCL 1.1 EP 将 640*480 (307200) 个整数从一个数组复制到另一个数组。

我从主机端分配了两个内存缓冲区,并告诉 OpenCL 通过主机指针使用它们(如果我是对的,这意味着没有 memcpy)。

这是我的笔记本电脑(在 GeForce GTX 765m 上工作)的输出:

CL_DEVICE_GLOBAL_MEM_SIZE : 2094923776 bytes
CL_DEVICE_MAX_MEM_ALLOC_SIZE : 523730944 bytes
CL_DEVICE_MAX_WORK_GROUP_SIZE : 1024
CL_KERNEL_WORK_GROUP_SIZE : 1024
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE : 32

clEnqueueNDRangeKernel execution time in milliseconds: 0.061856 ms
clEnqueueReadBuffer execution time in milliseconds: 0.100544 ms

这是 i.MX6q SoM(在 Vivante GC2000 GPU 上工作)的输出:

CL_DEVICE_GLOBAL_MEM_SIZE : 67108864 bytes
CL_DEVICE_MAX_MEM_ALLOC_SIZE : 33554432 bytes
CL_DEVICE_MAX_WORK_GROUP_SIZE : 1024
CL_KERNEL_WORK_GROUP_SIZE : 176
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE : 16

clEnqueueNDRangeKernel execution time in milliseconds: 4.463 ms
clEnqueueReadBuffer execution time in milliseconds: 7.199 ms

怎么了?
我认为我为 clEnqueueNDRangeKernel 提供了错误的 global_work_sizelocal_work_size 值功能。然而,我仍然真的不明白它们是如何工作的以及如何计算它们。我仍然不明白这些值和 CL_KERNEL_WORK_GROUP_SIZE 之间的区别以及 OpenCL 编译器如何计算内核工作组大小。为什么 CL_KERNEL_WORK_GROUP_SIZE 在 SoM 和我的笔记本电脑之间不同?不过我使用相同的内核。

有什么优化建议吗?
如果您有任何优化建议给我,我将不胜感激!所有这些上下文都是为了学习如何进行一些图像处理和开发算法以使其与 OpenCL 一起工作(因为我不能在此 SoM 上使用 OpenCV)。

关于c++ - 尝试使用 CL_MEM_USE_HOST_PTR 在 OpenCL 1.1 中创建一个简单的复制/粘贴值,为什么它不起作用?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46380143/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com