- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在将 CUDA 用于迭代 Karatsuba 算法,我想问一下,为什么计算出的一条线总是不同的。
首先,我实现了这个函数,它总是正确地计算出结果:
__global__ void kernel_res_main(TYPE *A, TYPE *B, TYPE *D, TYPE *result, TYPE size, TYPE resultSize){
int i = blockDim.x * blockIdx.x + threadIdx.x;
if( i > 0 && i < resultSize - 1){
TYPE start = (i >= size) ? (i % size ) + 1 : 0;
TYPE end = (i + 1) / 2;
for(TYPE inner = start; inner < end; inner++){
result[i] += ( A[inner] + A[i - inner] ) * ( B[inner] + B[i - inner] );
result[i] -= ( D[inner] + D[i-inner] );
}
}
}
现在我想使用 2D 网格并将 CUDA 用于 for 循环,所以我将函数更改为:
__global__ void kernel_res_nested(TYPE *A, TYPE *B, TYPE *D, TYPE *result, TYPE size, TYPE resultSize){
int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
TYPE rtmp = result[i];
if( i > 0 && i < resultSize - 1){
TYPE start = (i >= size) ? (i % size ) + 1 : 0;
TYPE end = (i + 1) >> 1;
if(j >= start && j <= end ){
// WRONG
rtmp += ( A[j] + A[i - j] ) * ( B[j] + B[i - j] ) - ( D[j] + D[i - j] );
}
}
result[i] = rtmp;
}
我这样调用这个函数:
dim3 block( 32, 8 );
dim3 grid( (resultSize+1/32) , (resultSize+7/8) );
kernel_res_nested <<<grid, block>>> (devA, devB, devD, devResult, size, resultSize);
而且结果总是错误的,总是不同的。我不明白为什么第二个实现是错误的并且总是计算出错误的结果。我看不出有任何与数据依赖相关的逻辑问题。有谁知道我该如何解决这个问题?
最佳答案
对于这样的问题,你应该提供一个MCVE。 (参见第 1 项 here)例如,我不知道 TYPE
指示的是什么类型,这对我将提出的解决方案的正确性很重要。
在您的第一个内核中,整个网格中只有一个线程在读取和写入位置 result[i]
。但是在你的第二个内核中,你现在有多个线程写入 result[i]
位置。他们互相冲突。 CUDA 没有指定线程运行的顺序,有些线程可能在其他线程之前、之后或同时运行。在这种情况下,某些线程可能会与其他线程同时读取 result[i]
。然后,当线程写入它们的结果时,它们将不一致。它可能因运行而异。您在那里有一个竞争条件(执行顺序依赖性,而不是数据依赖性)。
解决这个问题的规范方法是使用 reduction技术。
但是为了简单起见,我建议 atomics可以帮你解决。根据您所展示的内容,这更容易实现,并且有助于确认竞争条件。在那之后,如果你想尝试减少方法,有很多教程(上面有链接)和关于它的 cuda
标签上的很多问题。
您可以将内核修改成这样,以解决竞争条件:
__global__ void kernel_res_nested(TYPE *A, TYPE *B, TYPE *D, TYPE *result, TYPE size, TYPE resultSize){
int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
if( i > 0 && i < resultSize - 1){
TYPE start = (i >= size) ? (i % size ) + 1 : 0;
TYPE end = (i + 1) >> 1;
if(j >= start && j < end ){ // see note below
atomicAdd(result+i, (( A[j] + A[i - j] ) * ( B[j] + B[i - j] ) - ( D[j] + D[i - j] )));
}
}
}
请注意,根据您的 GPU 类型和您使用的 TYPE
的实际类型,这可能无法按原样工作(可能无法编译)。但由于您之前曾将 TYPE
用作循环变量,我假设它是一个整数类型,并且应该可以使用那些必需的 atomicAdd
。
一些其他评论:
这可能无法提供您期望的网格大小:
dim3 grid( (resultSize+1/32) , (resultSize+7/8) );
我认为通常的计算是:
dim3 grid( (resultSize+31)/32, (resultSize+7)/8 );
我总是推荐 proper CUDA error checking并使用 cuda-memcheck
运行您的代码,每当您在使用 CUDA 代码时遇到问题,以确保没有运行时错误。
它在我看来也是这样的:
if(j >= start && j <= end ){
应该是这样的:
if(j >= start && j < end ){
以匹配您的 for 循环范围。我还假设 size
小于 resultSize
(同样,MCVE 会有所帮助)。
关于c++ - Karatsuba - 使用 CUDA 进行多项式乘法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50030669/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!