gpt4 book ai didi

c++ - 将特征向量序列化为 QDataStream

转载 作者:太空宇宙 更新时间:2023-11-04 12:47:07 25 4
gpt4 key购买 nike

我正在尝试将特征向量序列化为 QDataStream:

#include "utils.h"
#include "Eigen/Eigen"

int main(int argc, char *argv[]) {

QCoreApplication a(argc, argv);

qRegisterMetaTypeStreamOperators<Eigen::Vector3d>("Eigen::Vector3d");

Eigen::Vector3d vec(9, 4, 5);

QByteArray data;
QDataStream ds(&data, QIODevice::ReadWrite);
ds << vec;

Eigen::Vector3d vv;
ds >> vv;
qDebug() << vv[1];

return a.exec();
}

实用程序.cpp

#pragma once

#include "utils.h"

Q_DECLARE_METATYPE(Eigen::Vector3d)

QDataStream &operator<<(QDataStream &out, const Eigen::Vector3d &v)
{
out << v[0] << v[1] << v[2];
return out;
}

QDataStream &operator>>(QDataStream &in, Eigen::Vector3d &v)
{
in >> v[0] >> v[1] >> v[2];
return in;
}

问题是 main 打印 0,所以我想我没有正确进行序列化。 |那么我在这里做错了什么?

最佳答案

一切正常,除了你永远不会读回任何东西,因为 QIODevice 只有一个读写位置。您需要将设备倒回到开始位置。我猜您尝试了很多不必要的代码是出于绝望。

与其用英语说调试输出的内容,不如用 Q_ASSERT 在代码中说:这样就无需解释了。

下面重现了您的问题,并演示了解决方案。它还将数据流支持扩展到所有常量大小的矩阵。

#include <QtCore>
#include <Eigen/Eigen>

template <typename T, int R, int C>
QDataStream &operator<<(QDataStream &out, const Eigen::Matrix<T, R, C> &m) {
Q_STATIC_ASSERT(R != Eigen::Dynamic && C != Eigen::Dynamic);
for (int i = 0; i < R; i ++)
for (int j = 0; j < C; j ++)
out << m(i, j);
return out;
}

template <typename T, int R, int C>
QDataStream &operator>>(QDataStream &in, Eigen::Matrix<T, R, C> &m) {
Q_STATIC_ASSERT(R != Eigen::Dynamic && C != Eigen::Dynamic);
for (int i = 0; i < R; i ++)
for (int j = 0; j < C; j ++)
in >> m(i, j);
return in;
}

int main() {
QByteArray data;
QDataStream ds(&data, QIODevice::ReadWrite);

Eigen::Vector3d const v1(9, 4, 5);
ds << v1;

Eigen::Vector3d v2;
ds >> v2;
Q_ASSERT(v2 != v1);
Q_ASSERT(ds.status() != QDataStream::Ok);

ds.device()->seek(0);
ds >> v2;
Q_ASSERT(v1 == v2);
}

一个完整的解决方案将处理整数、 float 和任意大小的复杂数据类型之间的互操作:

// https://github.com/KubaO/stackoverflown/tree/master/questions/eigen-stream-50905799
#include <QtCore>
#include <Eigen/Eigen>
#include <type_traits>

实现

namespace detail {
enum EigenType : quint8 {
Double = 0x00,
CDouble = 0x01,
ScalarMask = 0x0F,
Vector = 0x40, // d x 1
RowVector = 0x80, // 1 x d
Matrix = 0xC0, // d x d
StructureMask = 0xC0
};

template <typename T> void dumpElement(QDataStream &out, T el)
{ out << (double)el; }

template <typename T> void dumpElement(QDataStream &out, const std::complex<T> &el)
{ out << (double)el.real() << (double)el.imag(); }

template <typename T> void readDouble(QDataStream &in, T &el)
{ double v; in >> v; el = v; }

template <typename T> void readDouble(QDataStream &in, std::complex<T> &el)
{ double v; in >> v; el.real(v); el.imag(0); }

template <typename T> void readComplex(QDataStream &in, T &el)
{ double re, im; in >> re >> im; el = re; }

template <typename T> void readComplex(QDataStream &in, std::complex<T> &el)
{ double re, im; in >> re >> im; el.real(re); el.imag(im); }
} // namespace detail

template <typename D>
QDataStream &operator<<(QDataStream &out, const Eigen::MatrixBase<D> &m) {
quint8 type = 0;
if (std::is_integral<typename D::Scalar>::value ||
std::is_floating_point<typename D::Scalar>::value)
type = detail::Double;
else if (std::is_same<std::complex<float>, typename D::Scalar>::value ||
std::is_same<std::complex<double>, typename D::Scalar>::value)
type = detail::CDouble;
else {
out.setStatus(QDataStream::WriteFailed);
return out;
}
if (m.cols() == 1)
out << (type |= detail::Vector) << (quint32)m.rows();
else if (m.rows() == 1)
out << (type |= detail::RowVector) << (quint32)m.cols();
else
out << (type |= detail::Matrix) << (quint32)m.rows() << (quint32)m.cols();

for (int i = 0; i < m.rows(); i ++)
for (int j = 0; j < m.cols(); j ++)
detail::dumpElement(out, m(i, j));
return out;
}

template <typename D>
QDataStream &operator>>(QDataStream &in, Eigen::MatrixBase<D> &m) {
using std::swap;
quint8 type;
quint32 rows, cols;
in >> type;
if (in.status() != QDataStream::Ok)
return in;
bool const complex = (type & detail::ScalarMask) == detail::CDouble;
quint8 t = type & detail::StructureMask;
if (t == detail::Vector) {
cols = 1;
in >> rows;
}
else if (t == detail::RowVector) {
rows = 1;
in >> cols;
}
else if (t == detail::Matrix) {
in >> rows >> cols;
}
else {
in.setStatus(QDataStream::ReadCorruptData);
return in;
}
if (in.status() != QDataStream::Ok)
return in;
if ((rows == 1 && m.ColsAtCompileTime == 1) || (cols == 1 && m.RowsAtCompileTime == 1))
swap(rows, cols); // row- and column-vectors are interchangeable
m.derived().resize(rows, cols);
if (m.rows() == rows && m.cols() == cols) {
if (!complex) {
for (uint i = 0; i < rows; i ++)
for (uint j = 0; j < cols; j ++)
detail::readDouble(in, m(i, j));
} else {
for (uint i = 0; i < rows; i ++)
for (uint j = 0; j < cols; j ++)
detail::readComplex(in, m(i, j));
}
} else {
double dummy;
for (uint i = 0; i < (rows*cols*(complex ? 2 : 1)); ++i)
in >> dummy;
}
return in;
}

测试框架

template <typename T> QDebug operator<<(QDebug d, const std::complex<T> &c) {
return d << c.real() << ";" << c.imag();
}

template <typename T1, typename T2> struct Eigen::internal::cast_impl<std::complex<T1>, T2> {
EIGEN_DEVICE_FUNC static inline T2 run(const std::complex<T1> &x) { return x.real(); }
};

template <typename T1, typename T2 = T1, typename T3 = T1> void test() {
QByteArray data;
QDataStream ds(&data, QIODevice::ReadWrite);

using namespace Eigen;
Matrix<T1,3,1> const v1 = Matrix<T3,3,1>::Random().template cast<T1>();
Matrix<T1,1,3> const v2 = Matrix<T3,1,3>::Random().template cast<T1>();
Matrix<T1,4,4> const m1 = Matrix<T3,4,4>::Random().template cast<T1>();
Matrix<T1,Dynamic,Dynamic> const m2 = Matrix<T3,Dynamic,Dynamic>::Random(4, 4).template cast<T1>();
Matrix<T1,Dynamic,Dynamic> const m3 = Matrix<T3,Dynamic,Dynamic>::Random(2, 5).template cast<T1>();
ds << v1 << v1 << v2 << v2 << m1 << m1 << m2 << m2 << m3;

Matrix<T2,3,1> iv3 = Matrix<T2,3,1>::Random();
Matrix<T2,1,3> irv3;
Matrix<T2,4,4> im4;
Matrix<T2,Dynamic,Dynamic> imX;
ds >> iv3;
Q_ASSERT(iv3.template cast<T3>() != v1.template cast<T3>());
Q_ASSERT(ds.status() != QDataStream::Ok);

ds.device()->reset();
ds.resetStatus();
Q_ASSERT(ds.status() == QDataStream::Ok);
ds >> iv3 >> irv3;
Q_ASSERT(ds.status() == QDataStream::Ok);
Q_ASSERT(iv3.template cast<T3>() == v1.template cast<T3>());
Q_ASSERT((irv3.template cast<T3>() == Eigen::Matrix<T3,1,3>(v1.template cast<T3>())));
ds >> irv3 >> iv3;
Q_ASSERT(irv3.template cast<T3>() == v2.template cast<T3>());
Q_ASSERT((iv3.template cast<T3>() == Eigen::Matrix<T3,3,1>(v2.template cast<T3>())));

ds >> im4 >> imX;
Q_ASSERT(im4.template cast<T3>() == m1.template cast<T3>());
Q_ASSERT(imX.template cast<T3>() == m1.template cast<T3>());
ds >> im4 >> imX;
Q_ASSERT(im4.template cast<T3>() == m2.template cast<T3>());
Q_ASSERT(imX.template cast<T3>() == m2.template cast<T3>());
ds >> imX;
Q_ASSERT(imX.template cast<T3>() == m3.template cast<T3>());
}

int main() {
test<int>();
test<float>();
test<double>();
test<std::complex<float>>();
test<std::complex<double>>();

test<short, float>();
test<float, short, short>();
test<int, double>();
test<double, int, int>();
test<float, double>();
test<double, float, float>();

test<float, std::complex<float>>();
test<float, std::complex<double>>();
test<double, std::complex<float>, float>();
test<double, std::complex<double>>();
test<std::complex<float>, float, float>();
test<std::complex<double>, float, float>();
test<std::complex<float>, double, double>();
test<std::complex<double>, double, double>();

test<short, std::complex<float>>();
test<std::complex<float>, short, short>();
test<int, std::complex<double>>();
test<std::complex<double>, int, int>();
}

关于c++ - 将特征向量序列化为 QDataStream,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50905799/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com